1
|
Yin Z, Gao Y, Bu X, Wang J, Yao Z, Liu Q, Zhang Y, Yu G, Ping B. Homoharringtonine sensitized resistant acute myeloid leukemia cells to venetoclax-induced apoptosis. Leuk Lymphoma 2024; 65:2138-2150. [PMID: 39235111 DOI: 10.1080/10428194.2024.2400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Venetoclax (VEN), a B-cell lymphoma 2 (BCL-2) selective inhibitor, is widely used for treating acute myeloid leukemia (AML) with promising results. However, the anti-leukemic effect of VEN in relapsed/refractory (R/R)- AML requires improvement. In this study, we observed that combining homoharringtonine (HHT) with VEN plus azacitidine resulted in a significantly higher response and better survival than VA alone in patients with R/R-AML. Basic research indicates that HHT combined with VEN has a highly synergistic effect against both resistant AML cells and primary cells with/without mesenchymal stem cell (MSC) co-culture in vivo, inhibiting proliferation and colony-forming capacity of AML cells associated with concomitant cell cycle arrest. Mechanistically, HHT sensitizes AML cells to VEN by downregulating the anti-apoptotic proteins MCL-1/BCL-xL, activating reactive oxygen species (ROS), leading to mitochondrial membrane potential loss, and attenuating fatty acid (FA) uptake. These findings adding HHT to VEN-based regimens may enhance outcomes in R/R-AML patients.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangdong, P.R. China
| | - Xiaoyin Bu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P.R. China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zurong Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Clinical Medical Research Center of Hematological Diseases of Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Clinical Medical Research Center of Hematological Diseases of Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Clinical Medical Research Center of Hematological Diseases of Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
2
|
Zhao H, Mou Q, Wang F, Du ZQ, Yang CX. Profile of key metabolites and identification of HMGCS1-DHEA pathway in porcine Sertoli cells treated by Vitamin C. J Steroid Biochem Mol Biol 2024; 243:106580. [PMID: 38997072 DOI: 10.1016/j.jsbmb.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Vitamin C (Ascorbic acid, AA), as vital micro-nutrient, plays an essential role for male animal reproduction. Previously, we showed that vitamin C reprogrammed the transcriptome and proteome to change phenotypes of porcine immature Sertoli cells (iSCs). Here, we used LC-MS-based non-targeted metabolomics to further investigate the metabolic effects of vitamin C on porcine iSCs. The results identified 43 significantly differential metabolites (DMs) (16 up and 27 down) as induced by vitamin C (L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate, AA2P) treatment of porcine iSCs, which were mainly enriched in steroid related and protein related metabolic pathways. ELISA (Enzyme-Linked ImmunoSorbent Assay) showed that significantly differential metabolites of Dehydroepiandrosterone (DHEA) (involved in steroid hormone biosynthesis) and Desmosterol (involved in steroid degradation) were significantly increased, which were partially consistent with metabolomic results. Further integrative analysis of metabolomics, transcriptomics and proteomics data identified the strong correlation between the key differential metabolite of Dehydroepiandrosterone and 6 differentially expressed genes (DEGs)/proteins (DEPs) (HMGCS1, P4HA1, STON2, LOXL2, EMILIN2 and CCN3). Further experiments validated that HMGCS1 could positively regulate Dehydroepiandrosterone level. These data indicate that vitamin C could modulate the metabolism profile, and HMGCS1-DHEA could be the pathway to mediate effects exerted by vitamin C on porcine iSCs.
Collapse
Affiliation(s)
- Han Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qiao Mou
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Fang Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Cai-Xia Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China.
| |
Collapse
|
3
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
4
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
5
|
Zheng X, Guo C, Lv Z, Li J, Jiang H, Li S, Yu L, Zhang Z. Novel findings from arsenic‑lead combined exposure in mouse testicular TM4 Sertoli cells based on transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169611. [PMID: 38157908 DOI: 10.1016/j.scitotenv.2023.169611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Arsenic (As) and lead (Pb) exist widespread in daily life, and they are common harmful substances in the environment. As and Pb pollute the environment more often in combination than in isolation. The TM4 Sertoli cell line is one of the most common normal mouse testicular Sertoli cell lines. In vitro, we found that the type of combined action of As and Pb on TM4 Sertoli cells was additive action by using the isobologram analysis. To further investigate the combined toxicity of As and Pb, we performed mRNA and miRNA sequencing on TM4 Sertoli cells exposed to As alone (4 μM NaAsO2) and AsPb combined (4 μM NaAsO2 and 150 μM PbAc), respectively. Compared with the control group, 1391 differentially expressed genes (DEGs) and 6 differentially expressed miRNAs (DEMs) were identified in the As group. Compared with the control group, 2384 DEGs and 44 DEMs were identified in the AsPb group. Compared with the As group, 387 DEGs and 4 DEMs were identified in the AsPb group. Through data analysis, we discovered for the first time that As caused the dysfunction of cholesterol synthesis and energy metabolism, and disrupted cyclic adenosine monophosphate signaling pathway and wingless/integrated (Wnt) signaling pathway in TM4 Sertoli cells. In addition to affecting cholesterol synthesis and energy metabolism, AsPb combined exposure also up-regulated the antioxidant reaction level of TM4 Sertoli cells. Meanwhile, the Wnt signaling pathway of TM4 Sertoli cells was relatively normal when exposed to AsPb. In conclusion, at the transcription level, the combined action of AsPb is not merely additive effect, but involves synergistic and antagonistic effects. The new discovery of the joint toxic mechanism of As and Pb breaks the stereotype of the combined action and provides a good theoretical basis and research clue for future study of the combined-exposure of harmful materials.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Xie F, Qu J, Lin D, Feng K, Tan M, Liao H, Zeng L, Xiong Q, Huang J, Chen W. Reduced Proteolipid Protein 2 promotes endoplasmic reticulum stress-related apoptosis and increases drug sensitivity in acute myeloid leukemia. Mol Biol Rep 2023; 51:10. [PMID: 38085372 DOI: 10.1007/s11033-023-08994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The Proteolipid Protein 2 (PLP2), a protein in the Endoplasmic Reticulum (ER) membrane, has been reported to be highly expressed in various tumors. Previous studies have demonstrated that the reduced PLP2 can induce apoptosis and autophagy through ER stress-related pathways, leading to a decreased proliferation and aggressiveness. However, there is no research literature on the role of PLP2 in Acute Myeloid Leukemia (AML). METHODS PLP2 expression, clinical data, genetic mutations, and karyotype changes from GEO, TCGA, and timer2.0 databases were analyzed through the R packages. The possible functions and pathways of cells were explored through GO, KEGG, and GSEA enrichment analysis using the clusterProfiler R package. Immuno-infiltration analysis was conducted using the Cibersort algorithm and the Xcell R package. RT-PCR and western blot techniques were employed to identify the PLP2 expression, examine the knockdown effects in THP-1 cells, and assess the expression of genes associated with endoplasmic reticulum stress and apoptosis. Flow cytometry was utilized to determine the apoptosis and survival rates of different groups. RESULTS PLP2 expression was observed in different subsets of AML and other cancers. Enrichment analyses revealed that PLP2 was involved in various tumor-related biological processes, primarily apoptosis and lysosomal functions. Additionally, PLP2 expression showed a strong association with immune cell infiltration, particularly monocytes. In vitro, the knockdown of PLP2 enhanced endoplasmic reticulum stress-related apoptosis and increased drug sensitivity in THP-1 cells. CONCLUSIONS PLP2 could be a novel therapeutic target in AML, in addition, PLP2 is a potential endoplasmic reticulum stress regulatory gene in AML.
Collapse
Affiliation(s)
- Fahui Xie
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia Qu
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dainan Lin
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kexin Feng
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Tan
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haixiu Liao
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Longhui Zeng
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingquan Xiong
- Department of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Weiwen Chen
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Rebelo A, Kleeff J, Sunami Y. Cholesterol Metabolism in Pancreatic Cancer. Cancers (Basel) 2023; 15:5177. [PMID: 37958351 PMCID: PMC10650553 DOI: 10.3390/cancers15215177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic cancer's substantial impact on cancer-related mortality, responsible for 8% of cancer deaths and ranking fourth in the US, persists despite advancements, with a five-year relative survival rate of only 11%. Forecasts predict a 70% surge in new cases and a 72% increase in global pancreatic cancer-related deaths by 2040. This review explores the intrinsic metabolic reprogramming of pancreatic cancer, focusing on the mevalonate pathway, including cholesterol biosynthesis, transportation, targeting strategies, and clinical studies. The mevalonate pathway, central to cellular metabolism, significantly shapes pancreatic cancer progression. Acetyl coenzyme A (Acetyl-CoA) serves a dual role in fatty acid and cholesterol biosynthesis, fueling acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) development. Enzymes, including acetoacetyl-CoA thiolase, 3-hydroxy-3methylglutaryl-CoA (HMG-CoA) synthase, and HMG-CoA reductase, are key enzymes in pancreatic cancer. Inhibiting HMG-CoA reductase, e.g., by using statins, shows promise in delaying PanIN progression and impeding pancreatic cancer. Dysregulation of cholesterol modification, uptake, and transport significantly impacts tumor progression, with Sterol O-acyltransferase 1 (SOAT1) driving cholesterol ester (CE) accumulation and disrupted low-density lipoprotein receptor (LDLR) expression contributing to cancer recurrence. Apolipoprotein E (ApoE) expression in tumor stroma influences immune suppression. Clinical trials targeting cholesterol metabolism, including statins and SOAT1 inhibitors, exhibit potential anti-tumor effects, and combination therapies enhance efficacy. This review provides insights into cholesterol metabolism's convergence with pancreatic cancer, shedding light on therapeutic avenues and ongoing clinical investigations.
Collapse
Affiliation(s)
| | | | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany; (A.R.); (J.K.)
| |
Collapse
|
9
|
Zhang K, Shen F, Lei W, Han Y, Ma X, Lu Y, Hou Y, Liu W, Jiang M, Zhang T, Bai G. Ligustilide covalently binds to Cys129 of HMGCS1 to ameliorate dyslipidemia. Biomed Pharmacother 2023; 166:115323. [PMID: 37579692 DOI: 10.1016/j.biopha.2023.115323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Dyslipidemia is characterized by elevated levels of total cholesterol and triglycerides in serum, and has become the primary human health killer because of the major risk factors for cardiovascular diseases. Although there exist plenty of drugs for dyslipidemia, the number of patients who could benefit from lipid-lowering drugs still remains a concern. Ligustilide (Lig), a natural phthalide derivative, was reported to regulate lipid metabolic disorders. However, its specific targets and underlying molecular mechanism are still unclear. In this study, we found that Lig alleviated high fat diet-induced dyslipidemia by inhibiting cholesterol biosynthesis. Furthermore, a series of chemical biological analysis methods were used to identify its target protein for regulating lipid metabolism. Collectively, 3-hydroxy-3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) of hepatic cells was identified as a target for Lig to regulate lipid metabolism. The mechanistic study confirmed that Lig irreversibly binds to Cys129 of HMGCS1 via its metabolic intermediate 6,7-epoxyligustilide, thereby reducing cholesterol synthesis and improving lipid metabolism disorders. These findings not only systematically elucidated the lipid-lowering mechanism of Lig, but also provided a new structural compound for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wei Lei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yanqi Han
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, PR China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, PR China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| |
Collapse
|
10
|
Xiao MY, Li FF, Xie P, Qi YS, Xie JB, Pei WJ, Luo HT, Guo M, Gu YL, Piao XL. Gypenosides suppress hepatocellular carcinoma cells by blocking cholesterol biosynthesis through inhibition of MVA pathway enzyme HMGCS1. Chem Biol Interact 2023; 383:110674. [PMID: 37604220 DOI: 10.1016/j.cbi.2023.110674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Targeting abnormal cholesterol metabolism is a potential therapeutic direction. Therefore, more natural drugs targeting cholesterol in HCC need to be developed. Gypenosides (Gyp), the major constituent of Gynostemma pentaphyllum, has been demonstrated to have pharmacological properties on anti-cancer, anti-obesity, and hepatoprotective. We investigated whether Gyp, isolated and purified by our lab, could inhibit HCC progression by inhibiting cholesterol synthesis. The present research showed that Gyp inhibited proliferation and migration, and induced apoptosis in Huh-7 and Hep3B cells. Metabolomics, transcriptomics, and target prediction all suggested that lipid metabolism and cholesterol biosynthesis were the mechanisms of Gyp. Gyp could limit the production of cholesterol and target HMGCS1, the cholesterol synthesis-related protein. Downregulation of HMGCS1 could suppress the progression and abnormal cholesterol metabolism of HCC. In terms of mechanism, Gyp suppressed mevalonate (MVA) pathway mediated cholesterol synthesis by inhibiting HMGCS1 transcription factor SREBP2. And the high expression of HMGCS1 in HCC human specimens was correlated with poor clinical prognosis. The data suggested that Gyp could be a promising cholesterol-lowering drug for the prevention and treatment of HCC. And targeting SREBP2-HMGCS1 axis in MVA pathway might be an effective HCC therapeutic strategy.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yan-Shuang Qi
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jin-Bo Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Mei Guo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
11
|
Mehta A, Ratre YK, Soni VK, Shukla D, Sonkar SC, Kumar A, Vishvakarma NK. Orchestral role of lipid metabolic reprogramming in T-cell malignancy. Front Oncol 2023; 13:1122789. [PMID: 37256177 PMCID: PMC10226149 DOI: 10.3389/fonc.2023.1122789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
The immune function of normal T cells partially depends on the maneuvering of lipid metabolism through various stages and subsets. Interestingly, T-cell malignancies also reprogram their lipid metabolism to fulfill bioenergetic demand for rapid division. The rewiring of lipid metabolism in T-cell malignancies not only provides survival benefits but also contributes to their stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid metabolic programming in T-cell cancer, quantitative, qualitative, and spatial enrichment of specific lipid molecules occur. The formation of lipid rafts rich in cholesterol confers physical strength and sustains survival signals. The accumulation of lipids through de novo synthesis and uptake of free lipids contribute to the bioenergetic reserve required for robust demand during migration and metastasis. Lipid storage in cells leads to the formation of specialized structures known as lipid droplets. The inimitable changes in fatty acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-cell malignancies. FAO fuels the molecular pumps causing chemoresistance, while FAS offers structural and signaling lipids for rapid division. Lipid metabolism in T-cell cancer provides molecules having immunosuppressive abilities. Moreover, the distinctive composition of membrane lipids has implications for immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts are contributors to maintaining hallmarks of cancer in malignancies of T cells. In preclinical settings, molecular targeting of lipid metabolism in T-cell cancer potentiates the antitumor immunity and chemotherapeutic response. Thus, the direct and adjunct benefit of lipid metabolic targeting is expected to improve the clinical management of T-cell malignancies.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Subhash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
12
|
Chen Y, Li M, Yang Y, Lu Y, Li X. Antidiabetic drug metformin suppresses tumorigenesis through inhibition of mevalonate pathway enzyme HMGCS1. J Biol Chem 2022; 298:102678. [PMID: 36356901 PMCID: PMC9723917 DOI: 10.1016/j.jbc.2022.102678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Metformin, an antidiabetic drug, shows some potent antitumor effects. However, the molecular mechanism of metformin in tumor suppression has not been clarified. Here, we provided evidence using in vitro and in vivo data that metformin inhibited mevalonate pathway by downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), a key enzyme in this pathway. Our results further demonstrated that metformin downregulated HMGCS1 expression through inhibition of transcription factor nuclear factor E2-related factor 2. In addition, we determined that HMGCS1 was highly expressed in human liver and lung cancer tissues and associated with lower survival rates. In summary, our study indicated that metformin suppresses tumorigenesis through inhibition of the nuclear factor E2-related factor 2-HMGCS1 axis, which might be a potential target in cancer prevention and treatment.
Collapse
Affiliation(s)
- Yiyan Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yanying Yang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,For correspondence: Xiaoying Li; Yan Lu
| | - Xiaoying Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China,For correspondence: Xiaoying Li; Yan Lu
| |
Collapse
|
13
|
Uszczynska-Ratajczak B, Sugunan S, Kwiatkowska M, Migdal M, Carbonell-Sala S, Sokol A, Winata CL, Chacinska A. Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish. Life Sci Alliance 2022; 6:6/1/e202201514. [PMID: 36283702 PMCID: PMC9595208 DOI: 10.26508/lsa.202201514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. To characterize the spatial organization of mitochondrial gene products in zebrafish (Danio rerio), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the chchd4a -/- mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to use localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.
Collapse
Affiliation(s)
- Barbara Uszczynska-Ratajczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sreedevi Sugunan
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Monika Kwiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland,Centre of New Technologies, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdal
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Silvia Carbonell-Sala
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Sokol
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Zhang L, Chang N, Liu J, Liu Z, Wu Y, Sui L, Chen W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front Oncol 2022; 12:987499. [PMID: 36106108 PMCID: PMC9465383 DOI: 10.3389/fonc.2022.987499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Leqiang Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ning Chang
- Peking University Cancer Hospital, Beijing, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yajin Wu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| | - Wei Chen
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| |
Collapse
|
15
|
Identification of Key Genes and Pathways in Genotoxic Stress Induced Endothelial Dysfunction: Results of Whole Transcriptome Sequencing. Biomedicines 2022; 10:biomedicines10092067. [PMID: 36140167 PMCID: PMC9495888 DOI: 10.3390/biomedicines10092067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide. Endothelial disfunction underlying the atherogenesis can be triggered by genotoxic stress in endothelial cells. In the presented research whole transcriptome sequencing (RNA-seq) of human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells in vitro exposed to 500 ng/mL mitomycin C (treatment group) or 0.9% NaCl (control group) was performed. Resulting to bioinformatic analysis, 56 upregulated differentially expressed genes (DEGs) and 6 downregulated DEGs with absolute fold change ≥ 2 and FDR p-value < 0.05 were selected in HCAEC exposed to mitomycin C compared to the control group; in HITAEC only one upregulated DEG was found. According to Gene Ontology enrichment analysis, DEGs in HCAEC were classified into 25 functional groups of biological processes, while in HITAEC we found no statistically significant (FDR p-value < 0.05) groups. The four largest groups containing more than 50% DEGs (“signal transduction”, “response to stimulus”, “biological regulation”, and “regulation of biological process”) were identified. Finally, candidate DEGs and pathways underlying the genotoxic stress induced endothelial disfunction have been discovered that could improve our understanding of fundamental basis of atherogenesis and help to justification of genotoxic stress as a novel risk factor for atherosclerosis.
Collapse
|
16
|
Kong D, Mao JH, Li H, Wang JY, Li YY, Wu XC, Re GF, Luo HY, Kuang YQ, Wang KH. Effects and associated transcriptomic landscape changes of methamphetamine on immune cells. BMC Med Genomics 2022; 15:144. [PMID: 35765053 PMCID: PMC9241331 DOI: 10.1186/s12920-022-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Methamphetamine (METH) abuse causes serious health problems, including injury to the immune system, leading to increased incidence of infections and even making withdrawal more difficult. Of course, immune cells, an important part of the immune system, are also injured in methamphetamine abuse. However, due to different research models and the lack of bioinformatics, the mechanism of METH injury to immune cells has not been clarified. Methods We examined the response of three common immune cell lines, namely Jurkat, NK-92 and THP-1 cell lines, to methamphetamine by cell viability and apoptosis assay in vitro, and examined their response patterns at the mRNA level by RNA-sequencing. Differential expression analysis of two conditions (control and METH treatment) in three types of immune cells was performed using the DESeq2 R package (1.20.0). And some of the differentially expressed genes were verified by qPCR. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes by the clusterProfiler R package (3.14.3). And gene enrichment analysis was also performed using MetaScape (www.metascape.org). Results The viability of the three immune cells was differentially affected by methamphetamine, and the rate of NK-cell apoptosis was significantly increased. At the mRNA level, we found disorders of cholesterol metabolism in Jurkat cells, activation of ERK1 and ERK2 cascade in NK-92 cells, and disruption of calcium transport channels in THP-1 cells. In addition, all three cells showed changes in the phospholipid metabolic process. Conclusions The results suggest that both innate and adaptive immune cells are affected by METH abuse, and there may be commonalities between different immune cells at the transcriptome level. These results provide new insights into the potential effects by which METH injures the immune cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01295-9.
Collapse
Affiliation(s)
- Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Jun-Hong Mao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hong Li
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Jian-Yu Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Yu-Yang Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Xiao-Cong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Guo-Fen Re
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hua-You Luo
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Yunnan University, Kunming, 650032, China.
| |
Collapse
|
17
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|