1
|
Zheng Y, Sun R, Yang H, Gu T, Han M, Yu C, Chen P, Zhang J, Jiang T, Ding Y, Liang L, Quan R, Yao S, Zhao X. Aucubin Promotes BMSCs Proliferation and Differentiation of Postmenopausal Osteoporosis Patients by Regulating Ferroptosis and BMP2 Signalling. J Cell Mol Med 2025; 29:e70288. [PMID: 39823248 PMCID: PMC11740986 DOI: 10.1111/jcmm.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects. However, its effects on hBMSCs of PMOP patients are unknown. The aim of this present research was to investigate the impact and underlying process of aucubin on cell proliferation and osteogenic differentiation in hBMSCs isolated from PMOP patients. The ability of aucubin to inhibit the ferroptosis induced by erastin in hBMSCs was detected; ROS production, ferrous ion levels, SOD, MDA, and GPX activities were tested by using commercial kits. Next, ALP staining, ARS staining, RT-qPCR, RNA-sequencing, and Western blot were applied for determining the mRNA and protein expression levels associated with the osteogenesis of hBMSCs. The study also explored the involvement of BMP2/Smads signalling in aucubin promoting the osteogenesis of hBMSCs and evaluated the effects of aucubin intervention on osteoporosis using an ovariectomised rat model. The results indicated that aucubin significantly inhibited ROS generation and oxidative stress induced by erastin and protected against ferroptosis in hBMSCs. Additionally, aucubin facilitated osteogenic differentiation of hBMSCs by activating the BMP2/SMADs pathway and attenuated the progression of osteoporosis in OVX rats, suggesting a potential therapeutic benefit for postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Yang Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Research Institute of OrthopedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Huan Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Meichun Han
- Third Clinical Medical SchoolZhejiang Chinese Medical UniversityHangzhouChina
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianhua Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Ting Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Yangyang Ding
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Long Liang
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Renfu Quan
- Research Institute of OrthopedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
- Third Clinical Medical SchoolZhejiang Chinese Medical UniversityHangzhouChina
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Li J, Dong J, Li M, Zhu H, Xin P. Potential mechanisms for predicting comorbidity between multiple myeloma and femoral head necrosis based on multiple bioinformatics. Comput Biol Chem 2024; 113:108220. [PMID: 39405776 DOI: 10.1016/j.compbiolchem.2024.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE This study aims to utilize multiple bioinformatics tools to elucidate the potential mechanisms underlying the comorbidity of Multiple Myeloma (MM) and Osteonecrosis of the Femoral Head (ONFH). METHOD High-throughput microarray datasets for MM and ONFH were retrieved from the GEO database, followed by separate preprocessing. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to construct co-expression networks within the MM datasets, further identifying modules and genes associated with MM clinical characteristics. Potential comorbid genes were enriched and analyzed using pathway and network analysis tools, and key genes for MM and ONFH comorbidity were preliminarily screened using Cytoscape. The gene expression capabilities and performance were validated using two disease-related datasets, and we evaluated the differences and consistencies in the immune microenvironment between the two diseases. RESULTS Our screening identified 418 immune-related comorbid genes, showing consistent biological processes in ribosome synthesis, particularly protein synthesis across both diseases. Key genes were further identified through Protein-Protein Interaction (PPI) networks, and their performance was validated in a validation cohort, with Receiver Operating Characteristic (ROC) curve areas exceeding 0.8. The immune microenvironment analysis highlighted consistent plasma cell infiltration correlated with disease comorbidity, suggesting potential immune targets for future therapies. CONCLUSION MM and ONFH share common pathogenic genes that mediate changes in signaling pathways and immune cell dynamics, potentially influencing the comorbidity and progression of these diseases. Key genes identified, such as RPS19, RPL35, RPL24, RPL36, and EIF3G, along with plasma cell infiltration, may serve as central mechanisms in the development of both diseases. This study offers insights and references for further research into targeted treatments for these conditions.
Collapse
Affiliation(s)
- Jie Li
- The Second Affiliated Hospital of Shandong First Medical University(Department of Hematology), Tai'an, Shandong 271000, China
| | - Jing Dong
- The Second Affiliated Hospital of Shandong First Medical University(Department of Hematology), Tai'an, Shandong 271000, China
| | - Ming Li
- The Second Affiliated Hospital of Shandong First Medical University(Department of Orthopedics), Tai'an, Shandong 271000, China
| | - Hongbo Zhu
- The Second Affiliated Hospital of Shandong First Medical University(Department of Hematology), Tai'an, Shandong 271000, China
| | - Peicheng Xin
- The Second Affiliated Hospital of Shandong First Medical University(Department of Orthopedics), Tai'an, Shandong 271000, China.
| |
Collapse
|
3
|
Wang L, Huang X, Qin J, Qi B, Sun C, Guo X, Liu Q, Liu Y, Ma Y, Wei X, Zhang Y. The Role of Traditional Chinese Medicines in the Treatment of Osteoporosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:949-986. [PMID: 38879748 DOI: 10.1142/s0192415x24500393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Osteoporosis (OP) represents a substantial public health issue and is associated with increasing rates of morbidity and mortality. It is characterized by reduced bone mineral density, deterioration of bone tissue quality, disruption of the microarchitecture of bones, and compromised bone strength. These changes may be attributed to the following factors: intercellular communication between osteoblasts and osteoclasts; imbalanced bone remodeling; imbalances between osteogenesis and adipogenesis; imbalances in hormonal regulation; angiogenesis; chronic inflammation; oxidative stress; and intestinal microbiota imbalances. Treating a single aspect of the disease is insufficient to address its multifaceted nature. In recent decades, traditional Chinese medicine (TCM) has shown great potential in the treatment of OP, and the therapeutic effects of Chinese patent drugs and Chinese medicinal herbs have been scientifically proven. TCMs, which contain multiple components, can target the diverse pathogeneses of OP through a multitargeted approach. Herbs such as XLGB, JTG, GSB, Yinyanghuo, Gusuibu, Buguzhi, and Nvzhenzi are among the TCMs that can be used to treat OP and have demonstrated promising effects in this context. They exert their therapeutic effects by targeting various pathways involved in bone metabolism. These TCMs balance the activity of osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells), and they exhibit anti-inflammatory, immunomodulatory, anti-oxidative, and estrogen-like functions. These multifaceted mechanisms underlie the efficacy of these herbs in the management and treatment of OP. Herein, we examine the efficacy of various Chinese herbs and Chinese patent drugs in treating OP by reviewing previous clinical trials and basic experiments, and we examine the potential mechanism of these therapies to provide evidence regarding the use of TCM for treating OP.
Collapse
Affiliation(s)
- Liang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xinyi Huang
- School of Public Health, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jinran Qin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Xiangyun Guo
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qingqing Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yichen Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, P. R. China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
- Institute of Orthopaedics of Beijing Integrative Medicine, Beijing 100061, P. R. China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024; 16:102-113. [PMID: 38455105 PMCID: PMC10915952 DOI: 10.4252/wjsc.v16.i2.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) originate from many sources, including the bone marrow and adipose tissue, and differentiate into various cell types, such as osteoblasts and adipocytes. Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development. Osteogenesis is the process by which new bones are formed; it also aids in bone remodeling. Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways are involved in many cellular processes and considered to be essential for life. Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body. Recent studies have indicated that these two signaling pathways contribute to osteogenic differentiation. Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway. Here, we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation, emphasizing the canonical pathways. This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch- and extracellular-regulated kinases in osteogenic differentiation and bone development.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
5
|
Zhao Y, Cai X, Sun J, Bi W, Yu Y. Active components and mechanisms of total flavonoids from Rhizoma Drynariae in enhancing cranial bone regeneration: An investigation employing serum pharmacochemistry and network pharmacology approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117253. [PMID: 37778522 DOI: 10.1016/j.jep.2023.117253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Drynariae, as the dried rhizome of Drynaria fortunei (Kunze ex Mett.) J. Sm., is a traditional Chinese medicine for treating the injury and bone broken of falling and beating. Total flavonoids is considered as the major and effective compounds for the therapeutic efficacy of Rhizoma Drynariae. AIM OF THE STUDY To explore the effect of total flavonoids from Rhizoma Drynariae (TFRD) on bone regeneration and the underlying mechanisms. MATERIALS AND METHODS The effect of TFRD in various doses on bone reconstruction in cranial bone defect rats was explored in vivo. The active ingredients in TFRD-medicated serum were characterized by serum pharmacochemistry and integrated by network pharmacology analysis and target prediction. To elucidate the underlying mechanism of TFRD on bone regeneration, experimental validation in vitro was executed to assess the influence of different concentrations of TFRD-medicated serum on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RESULTS Micro-CT, histological examination, immunohistochemical analysis, and ELSA demonstrated that administration of TFRD could promote bone reconstruction in a rat cranial defect model. We identified 27 active components of TFRD using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Results from CCK8, ALP, and Alizarin Red S staining revealed that TFRD-medicated serum notably enhanced BMSCs proliferation and osteogenic differentiation. qRT-PCR and Western blot harvested results consistent with those predicted by network pharmacology, providing further evidence that TFRD activated the TGF-β signaling pathway to benefit bone regeneration. CONCLUSION The active components of TFRD modulate the TGF-β signaling pathway to facilitate osteogenesis, thereby repairing cranial bone defects.
Collapse
Affiliation(s)
- Yuxiao Zhao
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China
| | - Xiaofang Cai
- Department of Stomatology, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, PR China
| | - Jian Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China
| | - Wei Bi
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China.
| |
Collapse
|
6
|
Lei SS, Huang XW, Li LZ, Wang XP, Zhang Y, Li B, Shou D. Explorating the mechanism of Epimedii folium-Rhizoma drynariae herbal pair promoted bone defects healing through network pharmacology and experimental studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117329. [PMID: 37879510 DOI: 10.1016/j.jep.2023.117329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone defects are difficult to treat and have a high incidence of nonunion. The Epimedii folium-Rhizoma drynariae herbal pair (EDP) is a traditional Chinese medicine (TCM) used for treating bone diseases. However, the mechanisms by which EDP promotes osteogenesis or bone formation remain largely unclear. AIM OF THE STUDY This study aimed to investigate the mechanism of EDP promoted bone formation in bone defects using network pharmacology and experiments. MATERIALS AND METHODS The chemical components of EDP were analyzed by UHPLC-MS. The hub target and pathway enrichment analysis was conducted using molecular docking or network pharmacology. The pharmacological actions of EDP were determined by μCT and histopathology examination using a bone defect rat model. The effects of EDP on the mRNA expression of Bmp2, Smad2/5, Runx2, and Alp genes were measured by RT-PCR, while changes in the protein expressions of BMP2, COL1A1, SPP1, ALP, and RUNX2in the tibia tissues of the rats in response to EDP were analyzed by immunohistochemical staining or Western blot. We also performed cell viability assays, Alizarin Red and ALP staining assays, and RT-PCR to better understand how EDP affected osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RESULTS Identified 14 key compounds and 47 hub targets of EDP that may be involved in promoting osteogenesis to repair bone defects. And the BMP/Smad/Runx2 pathway was likely the key pathway through which EDP promoted bone defects repairing. The results of in vivo rat experiments indicated that EDP effectively promoted tibia repair in the model rats and activated the BMP/Smad/Runx2 pathway in the tibia tissue, with upregulating Bmp2, Bmpr1α, Smad2/5, Runx2, and Alp genes, and increased the protein expression of BMP2, COL1A1, RUNX2, and ALP. In vitro, EDP was found to increase the proliferation, differentiation, and mineralization in BMSCs- and also up-regulated the expression of key genes in the BMP/Smad/Runx2 pathway. CONCLUSION This study highlighted the ability of EDP to promote the osteogenic differentiation to enable bone repair by activating the BMP/Smad/Runx2 pathway.
Collapse
Affiliation(s)
- Shan Shan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Xiao Wen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Lin Zi Li
- Jingmen Central Hospital, 448000, Jingmen, China
| | - Xu Ping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Yang Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310007, China.
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| |
Collapse
|
7
|
Han L, Wang C, Wang T, Hu Y, Wang H. Total flavonoids of Rhizoma drynariae improves tendon-bone healing for anterior cruciate ligament reconstruction in mice and promotes the osteogenic differentiation of bone mesenchymal stem cells by the ERR1/2-Gga1-TGF-β/MAPK pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:106-119. [PMID: 37665165 DOI: 10.1002/tox.23955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Total flavonoids of Rhizoma drynariae (TFRD) is broadly used in the treatment of orthopedic diseases. Nevertheless, the effects and underlying mechanism of TFRD on tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) remain unclear. METHODS The ACLR mouse model was established. Hematoxylin and Eosin (HE) staining was used for histological analysis of tendon-bone healing. Western blot was utilized to detect the levels of osteogenic related factors (ALP, OCN, RUNX2). The viability and alkaline phosphatase (ALP) activity of bone mesenchymal stem cells (BMSCs) were determined by Cell Counting Kit-8 (CCK-8) and ALP assays. The interaction of estrogen related receptor alpha (ESRRA), estrogen related receptor beta (ESRRB), and golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (Gga1) was detected by luciferase reporter assays. The levels of important proteins on the TGF-β/MAPK pathway were measured by western blot. RESULTS TFRD improved tendon-bone healing, restored biomechanics of ACLR mice and activated the TGF-β/MAPK pathway. TFRD treatment also enhanced the viability and osteogenic differentiation of BMSCs in vitro. Then, we demonstrated that TFRD targeted ESRRA and ESRRB to transcriptionally activate Gga1 expression. Knockdown of ESRRA, ESRRB, or Gga1 suppressed the viability and osteogenic differentiation of TFRD-induced BMSCs, which was revealed to be restored by Gga1 overexpression. The overexpression of ESRRA, ESRRB, or Gga1 was demonstrated to promote the BMSC viability and osteogenic differentiation. TGF-β1 treatment can reverse the impact of Gga1 inhibition on osteogenic differentiation in TFRD-induced BMSCs. CONCLUSION TFRD improves tendon-bone healing in ACLR mouse models and facilitates the osteogenic differentiation of BMSCs through the ERR1/2-Gga1-TGF-β/MAPK pathway, which might deepen our understanding of the underlying mechanism of TFRD in tendon-bone healing.
Collapse
Affiliation(s)
- Lei Han
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Canfeng Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Tuo Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Yungeng Hu
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Hongshun Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| |
Collapse
|
8
|
Yu L, Shen Y, Yang J, Feng X, Zhou C, Lin J. Enhancing cranial defect repair in rats: investigating the effect of combining Total Flavonoids from Rhizoma Drynariae with calcium phosphate/collagen scaffolds. J Orthop Surg Res 2023; 18:903. [PMID: 38017558 PMCID: PMC10683164 DOI: 10.1186/s13018-023-04398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE To investigate the therapeutic efficacy of total flavonoids of Rhizoma Drynariae (TFRD) in conjunction with a calcium phosphate/collagen scaffold for the repair of cranial defects in rats. METHODS The subjects, rats, were segregated into four groups: Control, TFRD, Scaffold, and TFRD + Scaffold. Cranial critical bone defects, 5 mm in diameter, were artificially induced through precise drilling. Post-surgery, at intervals of 2, 4, and 8 weeks, micro-CT scans were conducted to evaluate the progress of skull repair. Hematoxylin-eosin and Masson staining techniques were applied to discern morphological disparities, and immunohistochemical staining was utilized to ascertain the expression levels of local osteogenic active factors, such as bone morphogenetic protein 2 (BMP-2) and osteocalcin (OCN). RESULTS Upon examination at the 8-week mark, cranial defects in the Scaffold and TFRD + Scaffold cohorts manifested significant repair, with the latter group displaying only negligible foramina. Micro-CT examination unveiled relative to its counterparts, and the TFRD + Scaffold groups exhibited marked bone regeneration at the 4- and 8-week intervals. Notably, the TFRD + Scaffold group exhibited substantial bone defect repair compared to the TFRD and Scaffold groups throughout the entire observation period, while histomorphological assessment demonstrated a significantly higher collagen fiber content than the other groups after 2 weeks. Immunohistochemical analysis further substantiated that the TFRD + Scaffold had augmented expression of BMP-2 at 2, 4 weeks and OCN at 2 weeks relative to other groups. CONCLUSIONS The synergistic application of TFRD and calcium phosphate/collagen scaffold has been shown to enhance bone mineralization, bone plasticity, and bone histomorphology especially during initial osteogenesis phases.
Collapse
Affiliation(s)
- Lan Yu
- Department of Stomatology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yiyang Shen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yang
- Department of Cytopathology, Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, China
| | - Xiaoyan Feng
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Changlong Zhou
- Department of Stomatology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Ren Y, Ma C, Yu Y, Yang D, Zhang L, Wang H, Sun L. Poly(l-lactic acid)-based double-layer composite scaffold for bone tissue repair. Regen Biomater 2023; 11:rbad093. [PMID: 38173766 PMCID: PMC10761204 DOI: 10.1093/rb/rbad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Bone defect is a serious threat to human health. Osteopractic total flavone (OTF) extracted from Rhizoma Drynariae has the effects of promoting bone formation. Panax notoginseng saponin (PNS) has the function of activating blood circulation and removing blood stasis. Therefore, combining OTF and PNS with poly(l-lactic acid) (PLLA) to prepare scaffolds containing PNS in the outer layer and OTF in the inner layer is a feasible solution to rapidly remove blood stasis and continue to promote bone formation. In addition, degradation rate of the scaffold can affect the release time of two drugs. Adding Mg particles in outer layer can control the degradation rate of the scaffold and the drug release. Therefore, a double-layer drug-loaded PLLA scaffold containing OTF in the inner layer, PNS and Mg particles in the outer layer was prepared and characterized to verify its feasibility. The experimental results showed that the scaffold can realize the rapid release of PNS and the continuous release of OTF. With the increase of Mg content, the drug release rate became faster. Animal experiments showed that the scaffold containing 5% Mg particles could effectively promote the formation of new bone in the bone defect of male New Zealand white rabbits, and the area and density of new bone formed were much better than those in the control group. These results demonstrated that the double-layer drug-loaded scaffold had good ability to promote bone repair.
Collapse
Affiliation(s)
- Yixing Ren
- Department of Joint Surgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Chunyang Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yao Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Dandan Yang
- Department of Science and Education, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lingling Zhang
- Department of Nursing, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Huitao Wang
- Department of General Surgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lei Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
10
|
Leal SS, Gusmão GODM, Uchôa VT, Figueiredo-Silva J, Pinto LSS, Tim CR, Assis L, Maia-Filho ALM, de Oliveira RA, Lobo AO, Pavinatto A. Evaluation of How Methacrylate Gelatin Hydrogel Loaded with Ximenia americana L. Extract (Steam Bark) Effects Bone Repair Activity Using Rats as Models. J Funct Biomater 2023; 14:438. [PMID: 37754851 PMCID: PMC10531560 DOI: 10.3390/jfb14090438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The use of bioactive materials, such as Ximenia americana L., to stimulate the bone repair process has already been studied; however, the synergistic effects of its association with light emitting diode (LED) have not been reported. The present work aims to evaluate the effect of its stem bark extract incorporated into methacrylate gelatin hydrogel (GelMA) on the bone repair process using pure hydrogel and hydrogel associated with LED therapy. For this purpose, the GelMA hydrogel loaded with Ximenia americana L. extract (steam bark) was produced, characterized and applied in animal experiments. The tests were performed using 50 male Wistar rats (divided into 5 groups) submitted to an induced tibia diaphyseal fracture. The therapy effects were verified for a period of 15 and 30 days of treatment using histological analysis and Raman spectroscopy. After 15 days of induced lesion/treatment, the new bone formation was significantly higher in the GXG (GelMA + X. americana L.) group compared to the control group (p < 0.0001). After 30 days, a statistically significant difference was observed when comparing the GXLEDG (GelMA + X. americana L. + LED) and the control group (p < 0.0001), the GXG and the control group (p < 0.001), and when comparing the GG, GXG (p < 0.005) and GXLEDG (p < 0.001) groups. The results shows that the Ximenia americana L. stem extract incorporated into GelMA hydrogel associated with LED therapy is a potentiator for animal bone repair.
Collapse
Affiliation(s)
- Seânia Santos Leal
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | | | | | - José Figueiredo-Silva
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | - Lucielma Salmito Soares Pinto
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | - Carla R. Tim
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| | - Antonio Luiz Martins Maia-Filho
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina 64049-550, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| |
Collapse
|
11
|
Qiu Y, Ying J, Yan F, Yu H, Zhao Y, Li H, Xia S, Chen J, Zhu J. Novel antiosteoporotic peptides purified from protein hydrolysates of taihe black-boned silky fowl: By larval zebrafish model and molecular docking. Food Res Int 2023; 169:112850. [PMID: 37254422 DOI: 10.1016/j.foodres.2023.112850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
The black-boned silky fowl (BSF) muscle protein hydrolysate was gained by alcalase. The hydrolysate could stimulate MC3T3-E1 cell proliferation, as well as enhance alkaline phosphatas (ALP) activity and deposits of minerals. After isolation and purification, 55 peptide sequences with Mascot score over 40 were identified. Combined with molecular docking simulation and molecular dynamics analysis, two novel peptides (PASTGAAK and PGPPGTPF) were identified with the lowest binding energy of -4.99 kcal/mol and -3.07 kcal/mol with receptor BMPR1A of BMP-2/Smad pathway, showing the ability to increase BMPR1A stability. Moreover, both PASTGAAK and PGPPGTPF revealed strong anti-osteoporosis activities in the zebrafish model induced by dexamethasone. Additionally, the identified peptides could be beneficial for the differentiation of MC3T3-E1 cell for upregulating the expression of some osteoblast-related genes and proteins by stimulating BMP-2/Smad pathway. Overall, the two newly identified peptides could be the potential candidate to prevent osteoporosis.
Collapse
Affiliation(s)
- Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianyue Ying
- Zhejiang University Hospital, Hangzhou 310027, China
| | - Fujie Yan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shengyao Xia
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
12
|
Lv L, Cheng W, Wang S, Lin S, Dang J, Ran Z, Zhu H, Xu W, Huang Z, Xu P, Xu H. Poly(β-amino ester) Dual-Drug-Loaded Hydrogels with Antibacterial and Osteogenic Properties for Bone Repair. ACS Biomater Sci Eng 2023; 9:1976-1990. [PMID: 36881921 DOI: 10.1021/acsbiomaterials.2c01524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
In this study, we developed a poly(β-amino ester) (PBAE) hydrogel for the double release of vancomycin (VAN) and total flavonoids of Rhizoma Drynariae (TFRD). VAN was covalently bonded to PBAE polymer chains and was released to enhance the antimicrobial effect first. TFRD chitosan (CS) microspheres were physically dispersed in the scaffold, TFRD was released from the microspheres, and osteogenesis was induced subsequently. The scaffold had good porosity (90.12 ± 3.27%), and the cumulative release rate of the two drugs in PBS (pH 7.4) solution exceeded 80%. In vitro antimicrobial assays demonstrated the antibacterial properties of the scaffold against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Besides these, cell viability assays indicated that the scaffold had good biocompatibility. Moreover, alkaline phosphatase and matrix mineralization were expressed more than in the control group. Overall, cell experiments confirmed that the scaffolds have enhanced osteogenic differentiation capabilities. In conclusion, the dual-drug-loaded scaffold with antibacterial and bone regeneration effects is promising in the field of bone repair.
Collapse
Affiliation(s)
- Lu Lv
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wanting Cheng
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Sining Wang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Sihui Lin
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Jiarui Dang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhihui Ran
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hong Zhu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wenjin Xu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhijun Huang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Peihu Xu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Haixing Xu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
13
|
Feng G, Zhang P, Huang J, Yu Y, Yang F, Zhao X, Wang W, Li D, Sun S, Niu X, Chai L, Li J. Sequential Release of Panax Notoginseng Saponins and Osteopractic Total Flavone from Poly ( L-Lactic Acid) Scaffold for Treating Glucocorticoid-Associated Osteonecrosis of Femoral Head. J Funct Biomater 2023; 14:jfb14010031. [PMID: 36662078 PMCID: PMC9863477 DOI: 10.3390/jfb14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids inhibit angiogenesis in the femoral head, which fails to nourish the bone tissue and leads to osteonecrosis. Restoring angiogenesis is not only essential for vessel formation, but also crucial for osteogenesis. Poly (L-lactic acid) (PLLA) is commonly used in the bone tissue engineering field. Panax notoginseng saponins (PNS) and osteopractic total flavone (OTF) promote angiogenesis and osteogenesis, respectively. We designed a sequentially releasing PLLA scaffold including PLLA loaded with OTF (inner layer) and PLLA loaded with PNS (outer layer). We assessed the osteogenic effect of angiogenesis in this scaffold by comparing it with the one-layered scaffold (PLLA embedded with OTF and PNS) in vivo. Results from the micro-CT showed that the data of bone mineral density (BMD), bone volume (BV), and percent bone volume (BV/TV) in the PO-PP group were significantly higher than those in the POP group (p < 0.01). Histological analyses show that the PO-PP scaffold exhibits better angiogenic and osteogenic effects compared with the one-layered scaffold. These might result from the different structures between them, where the sequential release of a bi-layer scaffold achieves the osteogenic effect of vascularization by initially releasing PNS in the outer layer. We further explored the possible mechanism by an immunohistochemistry analysis and an immunofluorescence assay. The results showed that the protein expressions of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1(CD31) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.01); the protein expressions of osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.05). Upregulating the expressions of angiogenic and osteogenic proteins might be the possible mechanism.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jian Huang
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yao Yu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fenghe Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xueqian Zhao
- Yuquan Hospital Affiliated to Tsinghua University, Beijing 100040, China
| | - Wei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| |
Collapse
|
14
|
Li X, Ma C. Alpha-2-Heremans-Schmid-glycoprotein (AHSG) a potential biomarker associated with prognosis of chromophobe renal cell carcinoma: The PROPOLIS study. Health Sci Rep 2022; 5:e878. [PMID: 36262809 PMCID: PMC9576116 DOI: 10.1002/hsr2.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aims Chromophobe renal cell carcinoma (chRCC) is the third common pathological subtype in renal cancers. However, the underlying mechanisms of specific genetic characteristics of chRCC are currently unclear. In this study, protein expression profiles, gene ontology (GO), and survival plots were provided by integrated bioinformatics analysis to investigate key genes associated with the mechanism of tumorigenesis and prognosis of chRCC. Methods The chRCC data set of gene expression profiles and clinical data were obtained from the gdc-client (https://portal.gdc.cancer.gov) deposited on The Cancer Genome Atlas (TCGA) data portal. Differentially expressed genes (DEGs) in chRCC, compared with normal samples, were analyzed by R packages "DESeq2," "edgeR," and "limma." Heat maps, volcano plots, and principal component analysis (PCA) were performed for integrated analyses. GUniGO, mutant analysis, and survival plots were performed by R packages. A protein-protein interaction (PPI) network was generated and analyzed by R packages, online String software, and Cytoscape software. Survival analysis and gene expressing comparison in tumor and normal samples were used to detect the core genes of chRCC. Furthermore, the top interacting proteins were reanalyzed. Results A total of 306 upregulated genes and 678 downregulated genes were identified by a Venn diagram. Ten hub genes were extracted from PPI network. Furthermore, Alpha-2-Heremans-Schmid-glycoprotein (AHSG), one of 10 hub genes, was found to be associated with chRCC, and had a big difference in expression between survival and dead events. AHSG could predict potential prognostic and may be a diagnostic biomarker in chRCC. Conclusion This study illustrated that AHSG may be a potential therapeutic target and prognostic genetic marker for chRCC.
Collapse
Affiliation(s)
- Xin Li
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Cuiyan Ma
- Department of Computer Science and Technology, BNRist, RIIT, Institute of Internet IndustryTsinghua UniversityBeijingChina
- Integrative Medicine Center, School of Life SciencesBeijing University of Chinese MedicineBeijingChina
- Tsinghua‐Peking Center for Life Sciences, School of Life Sciences, Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
15
|
Zhang C, Xu T, Lin L, Shaukat A, Tong X, Yue K, Cao Q, Zhang C, Liu F, Huang S. Morinda officinalis Polysaccharides Ameliorates Bone Growth by Attenuating Oxidative Stress and Regulating the Gut Microbiota in Thiram-Induced Tibial Dyschondroplasia Chickens. Metabolites 2022; 12:958. [PMID: 36295860 PMCID: PMC9609565 DOI: 10.3390/metabo12100958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia (TD) occurs in chickens and other fast-growing birds, affecting their cartilage growth and leading to reduced meat quality in broilers. Morinda officinalis polysaccharide (MOP) is one of the chief active components of Morinda officinalis, which promotes bone formation, inhibiting bone loss and having anti-oxidant and anti-inflammatory properties. A total of 120 AA chickens were randomly divided into the CON group (basal diet), TD group (100 mg/kg thiram + basal diet), and MOP group (100 mg/kg thiram + basal diet + water with 500 mg/kg MOP). The experiment lasted 21 days. The results showed that MOP could alleviates broiler lameness caused by TD, restore the morphological structure of tibial growth plate (TGP), increase tibial weight (p < 0.05), balance the disorder of calcium and phosphorus metabolism, and promote bone formation by increasing the expression of BMP-2, Smad4, and Runx2 genes In addition, MOP supplementation stimulated the secretion of plasma antioxidant enzymes (T-SOD and GSH-Px) by regulating the expression of SOD and GPX-1 genes, thereby enhancing the antioxidant capacity of TD broilers. Interestingly, we observed MOP can also improve gut microbiota by increasing the beneficial bacteria count and decreasing the harmful bacteria count. These findings indicated that MOP can regulate bone formation through the BMP/Smads signaling pathway, attenuating oxidative stress and regulating the gut microbiota of TD broilers, so as to achieve the effect of treating TD. This suggests that MOP might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Chaodong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingting Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Luxi Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ke Yue
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinqin Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shucheng Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
16
|
Liu N, Qi B, Zhang Y, Fang S, Sun C, Li Q, Wei X. Bu-Gu-Sheng-Sui decoction promotes osteogenesis via activating the ERK/Smad signaling pathways. Front Pharmacol 2022; 13:976121. [PMID: 36091820 PMCID: PMC9453880 DOI: 10.3389/fphar.2022.976121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoporosis is a systemic metabolic skeletal disease, which becomes a common public health problem that seriously endangers people’s health. Bu-Gu-Sheng-Sui decoction (BGSSD) is a safe and effective Chinese medicine formulation for the treatment of osteoporosis. Numerous studies have indicated that it played a significant role in bone anabolism. However, the underlying mechanism remains unclear. Herein, we selected senescence-accelerated mice prone 6 (SAMP6) and MC3T3-E1 cells to study the effects of BGSSD on osteogenesis and then investigated the potential mechanism of BGSSD. Our research found that BGSSD protected the bone mass in SAMP6, increased the expression of osteogenic specific factor Runx2, and improved bone trabecular structure. In vitro, BGSSD accelerated the proliferation and differentiation of MC3T3-E1 cells, which was characterized by stimulating the activity of Alkaline phosphatase (ALP) and raising the expression of Runx2. Moreover, BGSSD could effectively boost the expression levels of ERK and Smad in SAMP6 and MC3T3-E1. Therefore, we speculate that BGSSD may promote bone formation through ERK/Smad pathways. Collectively, our results highlight the importance of BGSSD as a compound in promoting osteogenic differentiation and osteogenesis, demonstrating that BGSSD may become a latent drug to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Ning Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yili Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengjie Fang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyue Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei,
| |
Collapse
|
17
|
Xu T, Zheng J, Jin W, Li L, Lin L, Shaukat A, Zhang C, Cao Q, Ashraf M, Huang S. Total Flavonoids of Rhizoma Drynariae Ameliorate Bone Growth in Experimentally Induced Tibial Dyschondroplasia in Chickens via Regulation of OPG/RANKL Axis. Front Pharmacol 2022; 13:881057. [PMID: 35694251 PMCID: PMC9178197 DOI: 10.3389/fphar.2022.881057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
Background:Rhizoma Drynariae, traditional Chinese herb, is widely used to treat and prevent bone disorders. However, experimental evidence on the use of Rhizoma Drynariae extract, total flavonoids of Rhizoma Drynariae (TFRD) to treat tibial dyschondroplasia (TD) in chickens and its underlying mechanisms have not been investigated. Purpose: To evaluate the therapeutic effect of TFRD on leg disease caused by TD and elucidate its mechanisms in modulating the bone status. Methods: Thiram-induced chicken TD model has been established. The tibia status was evaluated by analyzing tibia-related parameters including tibial weight, tibial length and its growth plate width and by performing histopathological examination. The expression of tibial bone development-related genes and proteins was confirmed by western blotting and qRT-PCR. Results: The results showed that administration of TFRD mitigated lameness, increased body weight, recuperated growth plate width in broilers affected by TD and the increase of tibia weight and tibia length is significantly positively correlated with body weight. Compared with the TD group broilers, 500 mg/kg TFRD evidently reduced the damage width of the growth plate and improved its blood vessel distribution by elevating the gene expression levels of BMP-2 and Runx2 and OPG/RANKL ratio. Furthermore, correlation analysis found that the damage width of the growth plate was negatively correlated with the expression levels of BMP-2 and OPG. Conclusion: The present study revealed that TFRD could promote the bone growth via upregulating OPG/RANKL ratio, suggesting that TFRD might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Tingting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - WeiXing Jin
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Lu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Chaodong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qinqin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Ashraf
- Livestock and Dairy Development Department, Pishin, Pakistan
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Shucheng Huang,
| |
Collapse
|
18
|
Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of Physical and Pharmacological Therapy in Enhancing Bone Regeneration Formation During Distraction Osteogenesis. Front Cell Dev Biol 2022; 10:837430. [PMID: 35573673 PMCID: PMC9096102 DOI: 10.3389/fcell.2022.837430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Distraction osteogenesis (DO) is a kind of bone regeneration technology. The principle is to incise the cortical bone and apply continuous and stable distraction force to the fractured end of the cortical bone, thereby promoting the proliferation of osteoblastic cells in the tension microenvironment and stimulating new bone formation. However, the long consolidation course of DO presumably lead to several complications such as infection, fracture, scar formation, delayed union and malunion. Therefore, it is of clinical significance to reduce the long treatment duration. The current treatment strategy to promote osteogenesis in DO includes gene, growth factor, stem-cell, physical and pharmacological therapies. Among these methods, pharmacological and physical therapies are considered as safe, economical, convenience and effective. Recently, several physical and pharmacological therapies have been demonstrated with a decent ability to enhance bone regeneration during DO. In this review, we have comprehensively summarized the latest evidence for physical (Photonic, Waves, Gas, Mechanical, Electrical and Electromagnetic stimulation) and pharmacological (Bisphosphonates, Hormone, Metal compounds, Biologics, Chinese medicine, etc) therapies in DO. These evidences will bring novel and significant information for the bone healing during DO in the future.
Collapse
Affiliation(s)
- Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| |
Collapse
|
19
|
Pang X, Zhong Z, Jiang F, Yang J, Nie H. Juglans regia L. extract promotes osteogenesis of human bone marrow mesenchymal stem cells through BMP2/Smad/Runx2 and Wnt/β-catenin pathways. J Orthop Surg Res 2022; 17:88. [PMID: 35164786 PMCID: PMC8842536 DOI: 10.1186/s13018-022-02949-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Background The present study investigates the effects of Juglans regia L. (walnut, JRL) leaves extract on osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were incubated with different concentrations of JRL extract (10, 20, 40, or 80 μM). Cell proliferation was evaluated by Cell Counting Kit-8 assay (CCK-8) assay. ALP activity and Alizarin Red staining were used to assess the osteogenesis of BMSCs. Western blot was performed to measure the levels of proteins. Results Our results showed all concentrations of JRL extract had no significant effect on cell proliferation. JRL extract concentration-dependently promoted osteoblastic differentiation and cell autophagy of hBMSCs, characterized by the increased expression of pro-osteogenic markers alkaline phosphatase (ALP), osteocalcin (BGLAP), osterin, and osteoprotegerin (OPG) and autophagy marker proteins (LC3II, Beclin-1, and p62). Furthermore, JRL extract stimulated the activation BMP2/Smad/Runx2 and Wnt/β-catenin signaling pathways in hBMSCs, which play key roles in osteogenesis differentiation. Meanwhile, BMP inhibitor (Noggin) and Wnt antagonist Dickkopf-1 (DKK1) both reversed the increases of BGLAP, osterin, and OPG expression induced by JRL extract. Conclusions Our findings indicate that JRL extract regulated osteogenic differentiation and cell autophagy of hBMSCs through the BMP2/Smad/Runx2 and Wnt/β-catenin pathways.
Collapse
|
20
|
Zhang F, Li Q, Wu J, Ruan H, Sun C, Zhu J, Song Q, Wei X, Shi Y, Zhu L. Total Flavonoids of Drynariae Rhizoma Improve Glucocorticoid-Induced Osteoporosis of Rats: UHPLC-MS-Based Qualitative Analysis, Network Pharmacology Strategy and Pharmacodynamic Validation. Front Endocrinol (Lausanne) 2022; 13:920931. [PMID: 35846330 PMCID: PMC9279576 DOI: 10.3389/fendo.2022.920931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis (GIOP) is a common form of secondary osteoporosis caused by the protracted or a large dosage of glucocorticoids (GCs). Total flavonoids of Drynariae rhizoma (TFDR) have been widely used in treating postmenopausal osteoporosis (POP). However, their therapeutic effects and potential mechanism against GIOP have not been fully elucidated. METHODS Ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESIQ-TOF-MS) experiments were performed for qualitative analysis. We performed hematoxylin-eosin (HE) staining and microcomputed tomography (micro-CT) analysis to detect the changes in bone microstructure. The changes in biochemical parameters in the serum samples were determined by performing an enzyme-linked immunosorbent assay (ELISA). The prediction results of network pharmacology were verified via quantitative real-time polymerase chain reaction (qRT-PCR) to elucidate the potential mechanism of TFDR against GIOP. RESULTS A total of 191 ingredients were identified in vitro and 48 ingredients in vivo. In the in-vivo experiment, the levels of the serum total cholesterol (TC), the serum triglyceride (TG), Leptin (LEP), osteocalcin (OC), osteoprotegerin (OPG), bone morphogenetic protein-2 (BMP-2), propeptide of type I procollagen (PINP), tartrate-resistant acid phosphatase (TRACP) and type-I collagen carboxy-terminal peptide (CTX-1) in the TFDR group significantly changed compared with those in the GIOP group. Moreover, the TFDR group showed an improvement in bone mineral density and bone microstructure. Based on the results of network pharmacology analysis, 67 core targets were selected to construct the network and perform PPI analysis as well as biological enrichment analysis. Five of the targets with high "degree value" had differential gene expression between groups using qRT-PCR. CONCLUSION TFDR, which may play a crucial role between adipose metabolism and bone metabolism, may be a novel remedy for the prevention and clinical treatment of GIOP.
Collapse
Affiliation(s)
- Fangqing Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuyue Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haonan Ruan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghui Song
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| |
Collapse
|
21
|
Ni L, Yuan C. The Pathogenic Potential of RUNX2. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|