1
|
Wang T, Xie ZH, Wang L, Luo H, Zhang J, Dong WT, Zheng XH, Ye C, Tian XB, Liu G, Zhu XS, Li YL, Kang QL, Zhang F, Peng WX. LncAABR07053481 inhibits bone marrow mesenchymal stem cell apoptosis and promotes repair following steroid-induced avascular necrosis. Commun Biol 2023; 6:365. [PMID: 37012358 PMCID: PMC10070412 DOI: 10.1038/s42003-023-04661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
The osteonecrotic area of steroid-induced avascular necrosis of the femoral head (SANFH) is a hypoxic microenvironment that leads to apoptosis of transplanted bone marrow mesenchymal stem cells (BMSCs). However, the underlying mechanism remains unclear. Here, we explore the mechanism of hypoxic-induced apoptosis of BMSCs, and use the mechanism to improve the transplantation efficacy of BMSCs. Our results show that the long non-coding RNA AABR07053481 (LncAABR07053481) is downregulated in BMSCs and closely related to the degree of hypoxia. Overexpression of LncAABR07053481 could increase the survival rate of BMSCs. Further exploration of the downstream target gene indicates that LncAABR07053481 acts as a molecular "sponge" of miR-664-2-5p to relieve the silencing effect of miR-664-2-5p on the target gene Notch1. Importantly, the survival rate of BMSCs overexpressing LncAABR07053481 is significantly improved after transplantation, and the repair effect of BMSCs in the osteonecrotic area is also improved. This study reveal the mechanism by which LncAABR07053481 inhibits hypoxia-induced apoptosis of BMSCs by regulating the miR-664-2-5p/Notch1 pathway and its therapeutic effect on SANFH.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Zhi-Hong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Lei Wang
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Jian Zhang
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Wen-Tao Dong
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Xiao-Han Zheng
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Chuan Ye
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Xiao-Bin Tian
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Gang Liu
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China
| | - Xue-Song Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, P.R. China
| | - Yan-Lin Li
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, P.R. China
| | - Qing-Lin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China
| | - Fei Zhang
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China.
| | - Wu-Xun Peng
- Department of Orthopedics and Traumatology, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, P.R. China.
| |
Collapse
|
2
|
Davuluri KS, Chauhan DS. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2022; 12:1009901. [PMID: 36389170 PMCID: PMC9647626 DOI: 10.3389/fcimb.2022.1009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Despite more than a decade of active study, tuberculosis (TB) remains a serious health concern across the world, and it is still the biggest cause of mortality in the human population. Pathogenic bacteria recognize host-induced responses and adapt to those hostile circumstances. This high level of adaptability necessitates a strong regulation of bacterial metabolic characteristics. Furthermore, the immune reponse of the host virulence factors such as host invasion, colonization, and survival must be properly coordinated by the pathogen. This can only be accomplished by close synchronization of gene expression. Understanding the molecular characteristics of mycobacterial pathogenesis in order to discover therapies that prevent or resolve illness relies on the bacterial capacity to adjust its metabolism and replication in response to various environmental cues as necessary. An extensive literature details the transcriptional alterations of host in response to in vitro environmental stressors, macrophage infection, and human illness. Various studies have recently revealed the finding of several microRNAs (miRNAs) that are believed to play an important role in the regulatory networks responsible for adaptability and virulence in Mycobacterium tuberculosis. We highlighted the growing data on the existence and quantity of several forms of miRNAs in the pathogenesis of M. tuberculosis, considered their possible relevance to disease etiology, and discussed how the miRNA-based signaling pathways regulate bacterial virulence factors.
Collapse
|
3
|
Cui N, Li H, Dun Y, Ripley-Gonzalez JW, You B, Li D, Liu Y, Qiu L, Li C, Liu S. Exercise inhibits JNK pathway activation and lipotoxicity via macrophage migration inhibitory factor in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2022; 13:961231. [PMID: 36147562 PMCID: PMC9485555 DOI: 10.3389/fendo.2022.961231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
The macrophage migration inhibitory factor (MIF) expressed in hepatocytes can limit steatosis during obesity. Lipotoxicity in nonalcoholic fatty liver disease is mediated in part by the activation of the stress kinase JNK, but whether MIF modulates JNK in lipotoxicity is unknown. In this study, we investigated the role of MIF in regulating JNK activation and high-fat fostered liver lipotoxicity during simultaneous exercise treatment. Fifteen mice were equally divided into three groups: normal diet, high-fat diet, and high-fat and exercise groups. High-fat feeding for extended periods elicited evident hyperlipemia, liver steatosis, and cell apoptosis in mice, with inhibited MIF and activated downstream MAPK kinase 4 phosphorylation and JNK. These effects were then reversed following prescribed swimming exercise, indicating that the advent of exercise could prevent liver lipotoxicity induced by lipid overload and might correlate to the action of modulating MIF and its downstream JNK pathway. Similar detrimental effects of lipotoxicity were observed in in vitro HepG2 cells palmitic acid treatment. Suppressed JNK reduced the hepatocyte lipotoxicity by regulating the BCL family, and the excess JNK activation could also be attenuated through MIF supplementation or exacerbated by MIF siRNA administration. The results found suggest that exercise reduces lipotoxicity and inhibits JNK activation by modulating endogenous hepatic MIF in NAFLD. These findings have clinical implications for the prevention and intervention of patients with immoderate diet evoked NAFLD.
Collapse
Affiliation(s)
- Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Hui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey W. Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Dezhao Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Cui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Suixin Liu,
| |
Collapse
|