1
|
Yang X, Yu Z, An L, Jing X, Yuan M, Xu T, Yu Z, Xu B, Lu M. Electroacupuncture stimulation ameliorates cognitive impairment induced by long-term high-fat diet by regulating microglial BDNF. Brain Res 2024; 1825:148710. [PMID: 38103878 DOI: 10.1016/j.brainres.2023.148710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Long-term high-fat diet (HFD) in adolescents leads to impaired hippocampal function and increases the risk of cognitive impairment. Studies have shown that HFD activates hippocampal microglia and induces hippocampal inflammation, which is an important factor for cognitive impairment. Electroacupuncture stimulation (ES), a nerve stimulation therapy, is anti-inflammatory. This study explored its therapeutic potential and mechanism of action in obesity-related cognitive impairment. 4-week-old C57 mice were given either normal or HFD for 22 weeks. At 19 weeks, some of the HFD mice were treated with ES and nigericin sodium salt. The cognitive behavior was assessed through Morris water maze test at 23 weeks. Western blotting was used to detect the expression levels of pro-inflammatory molecules IL-1β and IL-1R, synaptic plasticity related proteins synaptophysin and Postsynaptic Density-95 (PSD-95), and apoptotic molecules (Caspase-3 and Bcl-2), in the hippocampus. The number, morphology, and status of microglia, along with the brain-derived neurotrophic factor(BDNF) content, were analyzed using immunofluorescence. ES treatment improved cognitive deficits in HFD model mice, and decreased the expressions of microglial activation marker, CD68, and microglial BDNF. Inhibition of proinflammatory cytokine, IL-1β, and IL-1R promoted PSD-95 and synaptophysin expressions. Peripheral NLRP3 inflammasome agonist injections exacerbated the cognitive deficits in HFD mice and promoted the expressions of IL-1β and IL-1R in the hippocampus. The microglia showed obvious morphological damage and apoptosis. Collectively, our findings suggest that ES inhibits inflammation, regulates microglial BDNF, and causes remodeling of hippocampal function in mice to counteract obesity-like induced cognitive impairment. Overexcitation of peripheral inflammasome complexes induces hippocampal microglia apoptosis, which hinders the effects of ES.
Collapse
Affiliation(s)
- Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li An
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Mengqian Yuan
- Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
2
|
Wang MN, Zhai MX, Wang YT, Dai QF, Liu L, Zhao LP, Xia QY, Li S, Li B. Mechanism of Acupuncture in Treating Obesity: Advances and Prospects. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1-33. [PMID: 38351701 DOI: 10.1142/s0192415x24500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Obesity is a common metabolic syndrome that causes a significant burden on individuals and society. Conventional therapies include lifestyle interventions, bariatric surgery, and pharmacological therapies, which are not effective and have a high risk of adverse events. Acupuncture is an effective alternative for obesity, it modulates the hypothalamus, sympathetic activity and parasympathetic activity, obesity-related hormones (leptin, ghrelin, insulin, and CCK), the brain-gut axis, inflammatory status, adipose tissue browning, muscle blood flow, hypoxia, and reactive oxygen species (ROS) to influence metabolism, eating behavior, motivation, cognition, and the reward system. However, hypothalamic regulation by acupuncture should be further demonstrated in human studies using novel techniques, such as functional MRI (fMRI), positron emission tomography (PET), electroencephalogram (EEG), and magnetoencephalography (MEG). Moreover, a longer follow-up phase of clinical trials is required to detect the long-term effects of acupuncture. Also, future studies should investigate the optimal acupuncture therapeutic option for obesity. This review aims to consolidate the recent improvements in the mechanism of acupuncture for obesity as well as discuss the future research prospects and potential of acupuncture for obesity.
Collapse
Affiliation(s)
- Mi-Na Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, P. R. China
- School of Traditional Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Miao-Xin Zhai
- Yinghai Hospital, Daxing District, Beijing 100163, P. R. China
| | - Yi-Tong Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, P. R. China
- School of Traditional Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Qiu-Fu Dai
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, P. R. China
| | - Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, P. R. China
| | - Luo-Peng Zhao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, P. R. China
| | - Qiu-Yu Xia
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, P. R. China
| | - Shen Li
- Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P. R. China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, P. R. China
| |
Collapse
|
3
|
Sun X, Zhang A, Pang B, Wu Y, Shi J, Zhang N, Ye T. Electroacupuncture pretreatment alleviates spasticity after stroke in rats by inducing the NF-κB/NLRP3 signaling pathway and the gut-brain axis. Brain Res 2024; 1822:148643. [PMID: 37884180 DOI: 10.1016/j.brainres.2023.148643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE Spasticity is one of the most prevalent ischemic stroke sequelae and the leading cause of disability after stroke. Although electroacupuncture pretreatment has been shown to be effective in the treatment of ischemic stroke, its therapeutic effect and mechanism on post-stroke spasm remain unknown. The purpose of this study was to look into the potential mechanism of electroacupuncture pretreatment in inducing the NF-κB/NLRP3 signaling pathway and the gut-brain axis in the therapy of spasm after stroke. METHODS After electroacupuncture treatment at Baihui (DU20) and Qubin (G87), the rat model of middle cerebral artery occlusion (MCAO) was first established. HE, Nissl, and TUNEL staining were used to detect pathological alterations in the rat brain. The relative levels of IL-4, IL-6, TNF-α, and TMAO were determined by ELISA. qRT-PCR and Western blot were used to evaluate the mRNA and protein levels of NF-κB p65, NLRP3, caspase3 and caspase9. Gas chromatography-mass spectrometry (GC-MS) was used to determine the levels of short-chain fatty acids (SCFAs) in rat gut. RESULTS Hippocampal cells from rats with spasticity following stroke in the MCAO group were chaotic and loosely distributed with an unclear border, a blurred nucleolus, and vanished cytoplasm when compared to those from the sham operation group. Furthermore, the number of surviving neurons decreased while the number of apoptotic cells increased. In the I/R group, relative levels of IL-6, TNF-α, and TMAO increased considerably, while NF-κB p65, NLRP3, caspase3, and caspase9 were dramatically downregulated. The intestinal contents of n-propyl acetate and propyl butyrate were lowered in rats with spasticity following stroke. Electroacupuncture treatments miraculously remedied all of the foregoing pathogenic alterations. CONCLUSION Pretreatment with electroacupuncture relieves spasticity after stroke by decreasing the inflammatory response, suppressing the NF-κB/NLRP3 signaling pathway, and modulating the gut-brain axis by increasing n-propyl acetate and propyl butyrate levels in the bowel. Our findings establish a new molecular mechanism and theoretical foundation for electroacupuncture therapy of ischemic stroke.
Collapse
Affiliation(s)
- Xiuqi Sun
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Bo Pang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Jingyu Shi
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Ning Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Tao Ye
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China.
| |
Collapse
|
4
|
Zhang Q, Ye J, Wang X. Progress in the contrary effects of glucagon-like peptide-1 and chemerin on obesity development. Exp Biol Med (Maywood) 2023; 248:2020-2029. [PMID: 38058030 PMCID: PMC10800121 DOI: 10.1177/15353702231214270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by intestinal L-cells, plays a pivotal role in the modulation of β-cell insulin secretion in a glucose-dependent manner, concurrently promoting β-cell survival and β-cell mass. Notably, GLP-1 has emerged as an effective second-line treatment for type 2 diabetes mellitus, gaining further prominence for its pronounced impact on body weight reduction, positioning it as a potent antiobesity agent. However, the mechanism by which GLP-1 improves obesity remains unclear. Some reports suggest that this mechanism may be associated with the regulation of adipokine synthesis within adipose tissue. Chemerin, a multifunctional adipokine and chemokine, has been identified as a pivotal player in adipocyte differentiation and the propagation of systemic inflammation, a hallmark of obesity. This review provides a comprehensive overview of the mechanisms by which GLP-1 and chemerin play crucial roles in obesity and obesity-related diseases. It discusses well-established aspects, such as their effects on food intake and glycolipid metabolism, as well as recent insights, including their influence on macrophage polarization and adipose tissue thermogenesis. GLP-1 has been shown to increase the population of anti-inflammatory M2 macrophages, promote brown adipose tissue thermogenesis, and induce the browning of white adipose tissue. In contrast, chemerin exhibits opposite effects in these processes. In addition, recent research findings have demonstrated the promising potential of GLP-1-based therapies in directly or indirectly regulating chemerin expression. In an intriguing reciprocal relationship, chemerin has also been newly identified as a negative regulator of GLP-1 in vivo. This review delineates the intricate interplay between GLP-1 and chemerin, unraveling their mutual inhibitory interactions. To the best of our knowledge, no previous reviews have focused on this specific topic, making this review particularly valuable in expanding our understanding of the endocrine mechanisms of obesity and providing potential strategies for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Qilong Zhang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
5
|
Gao H, Li Y, Jin Y, Zhang L, Xia X, Liu J, Wang H, Xie Y, Ding W. Electroacupuncture activates angiogenesis by regulating the PI3K/Pten/Thbs1 signaling pathway to promote the browning of adipose tissue in HFD-induced obese mice. Biomed Pharmacother 2023; 166:115386. [PMID: 37651803 DOI: 10.1016/j.biopha.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigated the effect of electroacupuncture (EA) on the browning of white adipose tissue (WAT) via angiogenesis and its potential mechanism in obese mice. Four-week-old male C56BL/6 mice were randomly divided into a high-fat diet (HFD) and a normal chow diet (ND) group. After 12 weeks, HFD mice were randomly divided into two groups to receive or not receive EA for 3 weeks. After EA treatment, body weight, adipocyte size, serum glucose (GLU), triacylglycerol (TG), cholesterol (CHO), leptin (Lep), monocyte chemoattractant protein-1 (MCP-1), WAT browning-related genes, angiogenesis-related genes, and the PI3K/Pten/Thbs1 signaling pathway were evaluated. The results indicated that EA significantly reduced body weight, adipocyte size, and serum concentrations of GLU, TG, CHO, Lep and MCP-1 and promoted WAT browning. Angiogenesis and the PI3K/Pten/Thbs1 signaling pathway were all activated by EA intervention. The expression levels were consistent with the results of RNA-seq and confirmed via qRTPCR and WB. Our study showed that EA may activate angiogenesis via the PI3K/Pten/Thbs1 signaling pathway in WAT, thereby promoting the browning and thermogenesis of adipose tissue.
Collapse
Affiliation(s)
- Hongyan Gao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanhui Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yue Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinkun Liu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Huaifu Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Xie
- Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu 610007, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Mei L, Zhu Q, Bai X, Zhang Y, Huang H, Yang M, Shi Y, Liang C, Zhang Z, Chen Q. Cellular Evidence for Telocytes Mediating Electroacupuncture to Ameliorate Obesity in Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1746-1754. [PMID: 37639834 DOI: 10.1093/micmic/ozad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023]
Abstract
Electroacupuncture has been generally applied to target obesity, the principle of which is based on the meridian in traditional Chinese medicine. Although Telocytes (TCs) have been reported as the potential essence of meridians, their specific role in the electroacupuncture treatment of obesity remains unclear. Thus, we investigated the cellular evidence for TC-mediated electroacupuncture to alleviate obesity. Mice were divided into three groups as follows: electroacupuncture group (EA), control group (CG), and normal group (NG). The present study showed that the weight of perirenal white adipose tissue (rWAT), the serum level of total cholesterol, and the low-density lipoprotein cholesterol were all significantly decreased after electroacupuncture. Ultrastructurally, the prolongations (telopodes, Tps) of TCs were in direct contact with adipocytes, and lipid droplets were distributed on the surface of Tps. The proportions of double-positive fluorescent areas of TCs (CD34 and PDGFRα) were significantly elevated with concomitant elongated Tps in EA mice, as compared to those in CG mice. The expression of Cx43 and CD63 (gap junction and exosome markers) was significantly enhanced. These characteristics facilitated the transmission of electroacupuncture stimulation from skin to rWAT. We conclude that electroacupuncture relieved obesity by activating TCs morphologically, upregulating the gap junctions between TCs, and increasing the exosomes around TCs.
Collapse
Affiliation(s)
- Lu Mei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Qianmei Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Yingxin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Haixiang Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Min Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Ziyue Road, Minhang District, Shanghai 200241, China
| | - Chunhua Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Zhenwei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
7
|
Chen S, Wang L, Yuan Y, Wen Y, Shu S. Electroacupuncture regulates microglia polarization via lncRNA-mediated hippo pathway after ischemic stroke. Biotechnol Genet Eng Rev 2023:1-17. [PMID: 36760060 DOI: 10.1080/02648725.2023.2177046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia polarization and microglia-mediated inflammation play a crucial role in the development of ischaemic brain injury. Electroacupuncture (EA) has the function of anti-inflammatory, which has been thoroughly validated and utilized to treat ischemic brain damage. The fundamental mechanism by which EA alleviates ischemic brain damage by decreasing microglia polarization and microglia-mediated inflammation, however, remains unknown. In the current study, the activation of microglia and inflammatory cytokines was analyzed to confirm the anti-inflammatory function of EA in middle cerebral artery occlusion (MCAO) rats. Whole-transcriptome sequencing was used to examine the differentially expressed lncRNAs in the control, MCAO, and MCAO +EA groups. Our findings demonstrated that EA treatment reduced microglia activation and inflammatory cytokine production. In addition, there are 44 lncRNAs were found significantly different in three groups, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the predicted targets of these lncRNAs suggested that the Hippo pathway may contribute to the development of ischaemic brain injury and to the anti-inflammatory function of EA. Moreover, our data showed that lncRNA TCONS_00022826 (Lnc826) was upregulated in MCAO group, whereas blocked by EA treatment. Furthermore, in vitro OGD cell model data showed that Lnc826 promoted M1 polarization of microglia by regulating the Hippo pathway. Our data suggested that regulating microglia polarization via Lnc826-mediated hippo pathway is a possible mechanism of the EA treatment on ischemic brain injury.
Collapse
Affiliation(s)
- Shenxu Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of TCM, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmei Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yuan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture and Tuina, Changhai Hospital, Shanghai China
| | - Yunfan Wen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Zuo G, Gao Y, Lu G, Bu M, Liu J, Zhang J, Fan X, Chen H, Wang X, She Y. Auriculotherapy Modulates Macrophage Polarization to Reduce Inflammatory Response in a Rat Model of Acne. Mediators Inflamm 2023; 2023:6627393. [PMID: 37159798 PMCID: PMC10163966 DOI: 10.1155/2023/6627393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Background The inflammatory response is an important part of the pathogenesis of acne vulgaris. Auriculotherapy has been shown to have a good therapeutic effect on this disease. The aim of this study was to explore the mechanism underlying the anti-inflammatory effect of auriculotherapy in the treatment of acne vulgaris. Methods Propionibacterium acnes was injected subcutaneously into the ears of rats to establish an animal model of acne. The auriculotherapy intervention in rats consisted of auricular bloodletting therapy (ABT), auricular point sticking (APS), or a combination of both (ABPS). The anti-inflammatory effects of auriculotherapy were evaluated by measuring changes in ear thickness, local body surface microcirculation in the ear, and serum inflammatory factors in rats. The polarization of macrophages was analyzed by flow cytometry, and the expression of TLR2/NF-κB signaling pathway in the target tissues was analyzed using western blot. Results ABT, APS, and ABPS all reduced the erythema of ear acne, decreased microcirculation in localized ear acne, and decreased serum levels of TNF-α and IL-1β in rats. Meanwhile, the three interventions reduced M1-type macrophages and increased M2-type macrophages; only APS could reduce the expression of TLR2/NF-κB signaling pathway. Conclusion ABT, APS, and ABPS can improve the inflammatory symptoms of acne and reduce inflammatory cytokines. APS may exert anti-inflammatory effects by altering macrophage polarization and decreasing TLR2/NF-κB expression.
Collapse
Affiliation(s)
- Guang Zuo
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yidan Gao
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Guangtong Lu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ming Bu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jun Liu
- Department of Rehabilitation, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Juncha Zhang
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Xisheng Fan
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Hao Chen
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xuesong Wang
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yanfen She
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
- Department of Experimental Acupuncture, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
9
|
Zhou J, Li L, Qu M, Tan J, Sun G, Luo F, Zhong P, He C. Electroacupuncture pretreatment protects septic rats from acute lung injury by relieving inflammation and regulating macrophage polarization. Acupunct Med 2022:9645284221118588. [PMID: 36039902 DOI: 10.1177/09645284221118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Macrophage polarization toward the M2 phenotype may attenuate inflammation and have a therapeutic effect in acute lung injury (ALI). OBJECTIVE To investigate the role of electroacupuncture (EA) pretreatment on the inflammatory response and macrophage polarization in a septic rat model of lipopolysaccharide (LPS)-induced ALI. METHODS Male Sprague Dawley rats (n = 24) were randomly divided into three groups (n = 8 each): control (Ctrl), ALI (LPS) and pre-EA (LPS + EA pretreatment). ALI and pre-EA rats were injected with LPS via the caudal vein. Pulmonary edema was assessed by left upper pulmonary lobe wet-to-dry (W/D) ratios. Lung injury scores were obtained from paraffin-embedded and hematoxylin and eosin-stained sections of the left lower pulmonary lobe. Inflammatory activation was quantified using serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF)-β and IL-10 levels measured by enzyme linked immunosorbent assay (ELISA). Macrophage phenotype was determined by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS Mean lung W/D ratio was significantly lower and serum IL-1β levels were decreased in pre-EA rats compared to ALI rats (P < 0.05). TNF-α mRNA expression was decreased and mannose receptor (MR) and Arg1 mRNA expression was increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.01). Arg1 protein expression was similarly increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.05). CONCLUSION EA pretreatment may play a protective role by promoting macrophage polarization to the M2 phenotype in a septic rat model of LPS-induced ALI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Mengjian Qu
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Jinqu Tan
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Guanghua Sun
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Fu Luo
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Peirui Zhong
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Yi S, Tao X, Wang Y, Cao Q, Zhou Z, Wang S. Effects of propofol on macrophage activation and function in diseases. Front Pharmacol 2022; 13:964771. [PMID: 36059940 PMCID: PMC9428246 DOI: 10.3389/fphar.2022.964771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body’s immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.
Collapse
Affiliation(s)
- Shuyuan Yi
- School of Anesthesiology, Weifang Medical University, Weifang, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyi Tao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| |
Collapse
|
11
|
Efficacy and Safety of Moxibustion for Menopausal Obesity: A Multicentre, Randomized, Controlled Trial Protocol. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9255017. [PMID: 35966744 PMCID: PMC9371829 DOI: 10.1155/2022/9255017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Background. In the past, moxibustion has been widely used to treat endocrine system disorders, but evidence of its effectiveness is scarce at this point. The aim of this multicenter, randomized, controlled trial is to evaluate the efficacy and safety of treating menopausal obesity with moxibustion. Methods/Design. There are six centers taking part in this randomized, controlled, parallel trial. A total of 216 patients with menopausal obesity will be randomly divided into two equal groups: the “moxibustion for harmonization of Yin and Yang” group and the gentle moxibustion group. A 12-week study period with moxibustion will be preceded by a 1-week baseline, followed by a 12-week follow-up. We will conduct an interim analysis to determine whether or not the treatment is efficacious and safe after 216 participants have completed a 12-week treatment period. Evaluations will be conducted at weeks 0, 4, 8, 12, 18, and 24. The main outcome is waist circumference (WC), and the rate of WC reduction will be compared to the baseline. An intention-to-treat analysis will be performed with a two-sided P value of <0.05 considered significant. Participants who withdraw from the trial will be analyzed according to the intention-to-treat formula (ITT). Discussion. These results will be used to support selecting the right moxibustion prescription and guiding the improvement of clinical efficacy. This trial will provide convincing evidence of moxibustion's effectiveness and safety in the treatment of obesity by “moxibustion for harmonization of Yin and Yang,” which will be conducive to the promotion and clinical application of the theory of “moxibustion for harmonization of Yin and Yang.” Trial Registration. This trial is registered with Clinical Trials.gov: NCT04943705 (registered on June 27, 2021).
Collapse
|