1
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Hong Y, Chen T, He Q, Ma Q, Chen Z. Clinical implications of serum miR-34a in breast cancer and its predictive value for the efficacy of neoadjuvant chemotherapy. Am J Transl Res 2024; 16:2711-2718. [PMID: 39006295 PMCID: PMC11236626 DOI: 10.62347/phys4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES This study aims to explore the implications of serum miR-34a in breast cancer (BC) and its predictive value for the efficacy of neoadjuvant chemotherapy (NACT). METHODS A retrospective analysis was performed on 102 female BC patients (research group) admitted to The Second Affiliated Hospital of Anhui Medical University between January 2016 to March 2018 and 102 concurrent female health controls who underwent physical examinations (control group). Serum samples from both groups were subjected to quantitative reverse transcription polymerase chain reaction to measure miR-34a expression. The correlation of miR-34a with BC patients' clinical parameters was analyzed, and the implications of miR-34a for diagnosing BC and predicting NACT efficacy were assessed by receiver operating characteristic curves. Logistic regression analysis was employed to determine whether miR-34a independently influenced treatment effectiveness and patient outcomes. RESULTS The data showed significantly lower miR-34a levels in the research group than in the control group (P<0.05). The area under the curve (AUC) of miR-34a for differentiating BC was 0.888. In BC patients, miR-34a was strongly correlated with tumor staging and differentiation degree. Following NACT, BC patients showed an evident rise in miR-34a expression, with higher levels in patients with effective treatment compared to those with treatment failure (P<0.05). The AUC values of serum miR-34a in predicting the efficacy of neoadjuvant chemotherapy from FD to SD and from SD to TD were 0.880 and 0.861, respectively (P<0.001). Furthermore, patients with favorable prognosis exhibited markedly higher serum miR-34a expression than those with poor prognosis (P<0.05). The AUC of miR-34a expression for predicting adverse prognosis was 0.825. Decreased miR-34a was identified as an independent risk factor for treatment failure and poor prognosis. CONCLUSIONS Taken together, serum miR-34a is downregulated in BC and can predict the clinical progression of BC patients and the therapeutic efficacy of NACT.
Collapse
Affiliation(s)
- Yanyan Hong
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University Hefei 230601, Anhui, China
| | - Tingting Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University Hefei 230601, Anhui, China
| | - Qian He
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University Hefei 230601, Anhui, China
| | - Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University Hefei 230601, Anhui, China
| | - Zhendong Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University Hefei 230601, Anhui, China
| |
Collapse
|
3
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
4
|
Zhao C, Li X, Pan X, Xu J, Jiang R, Li Y. LINC02532 by Mediating miR-541-3p/HMGA1 Axis Exerts a Tumor Promoter in Breast cancer. Mol Biotechnol 2023:10.1007/s12033-023-00995-6. [PMID: 38030946 DOI: 10.1007/s12033-023-00995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The newly discovered LINC02532 is abnormally expressed in a variety of cancers and promotes cancer progression. The research proposed to discover the biological and molecular mechanisms of LINC02532 in breast cancer (BCa). In the resected BCa tissue samples and adjacent normal tissues, LINC02532, miR-541-3p, and High Mobility Group A1 (HMGA1) levels were determined. Cell function experiments were carried out on the premise of cell transfection with relevant plasmids. Based on that, the influence of LINC02532, miR-541-3p, and HMGA1 on MCF-7 cell activities (proliferation, migration, invasion, cell cycle, and apoptosis) was determined, as well as on EMT. Additionally, animal experiments were allowed to support cell experimental conclusions on LINC02532. Finally, the mechanistic network of LINC02532, miR-541-3p, and HMGA1 was identified. It was BCa tissues highly expressing LINC02532 and HMGA1, while lowly expressing miR-541-3p. Functionally, LINC02532 depletion repressed the activities and EMT process of MCF-7 cells. Silencing LINC02532 delayed tumor growth in mice. In terms of mechanism, LINC02532 mainly existed in the cytoplasm and could mediate HMGA1 expression by absorbing miR-541-3p. The findings offer new insights into the molecular mechanisms of LINC02532 in BCa and, more importantly, new strategies for the clinical treatment of BCa.
Collapse
Affiliation(s)
- ChunMing Zhao
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Xiao Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - XueQiang Pan
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - JiaWen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Rui Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| | - YuYang Li
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
5
|
MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. Int J Mol Sci 2022; 23:ijms232415978. [PMID: 36555616 PMCID: PMC9786715 DOI: 10.3390/ijms232415978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is among the most common cancers in women, second to skin cancer. Mammary gland development can influence breast cancer development in later life. Processes such as proliferation, invasion, and migration during mammary gland development can often mirror processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs play a key role in mammary gland development, and aberrant expression can initiate or promote breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion, and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due to their ability to target many genes at once. Investigation of miRNAs and their role in mammary gland development may inform about their role in breast cancer. In particular, by studying miRNA in development, mechanisms and potential targets for breast cancer treatment may be elucidated.
Collapse
|
6
|
Wang L, Zhang J, Xia M, Liu C, Zu X, Zhong J. High Mobility Group A1 (HMGA1): Structure, Biological Function, and Therapeutic Potential. Int J Biol Sci 2022; 18:4414-4431. [PMID: 35864955 PMCID: PMC9295051 DOI: 10.7150/ijbs.72952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein characterized by no transcriptional activity. It mainly plays a regulatory role by modifying the structure of DNA. A large number of studies have confirmed that HMGA1 regulates genes related to tumours in the reproductive system, digestive system, urinary system and haematopoietic system. HMGA1 is rare in adult cells and increases in highly proliferative cells such as embryos. After being stimulated by external factors, it will produce effects through the Wnt/β-catenin, PI3K/Akt, Hippo and MEK/ERK pathways. In addition, HMGA1 also affects the ageing, apoptosis, autophagy and chemotherapy resistance of cancer cells, which are linked to tumorigenesis. In this review, we summarize the mechanisms of HMGA1 in cancer progression and discuss the potential clinical application of targeted HMGA1 therapy, indicating that targeted HMGA1 is of great significance in the diagnosis and treatment of malignancy.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, First School of Clinical Medicine, University of Southern Medical, Guangzhou 510515, Guangdong, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
7
|
Liu L, Shi Y, Lai Q, Huang Y, Jiang X, Liu Q, Huang Y, Xia Y, Xu D, Jiang Z, Tu W. Construction of a Signature Model to Predict the Radioactive Iodine Response of Papillary Thyroid Cancer. Front Endocrinol (Lausanne) 2022; 13:865909. [PMID: 35634509 PMCID: PMC9132198 DOI: 10.3389/fendo.2022.865909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Papillary thyroid cancer (PTC) accounts for about 90% of thyroid cancer. There are approximately 20%-30% of PTC patients showing disease persistence/recurrence and resistance to radioactive iodine (RAI) treatment. For these PTC patients with RAI refractoriness, the prognosis is poor. In this study, we aimed to establish a comprehensive prognostic model covering multiple signatures to increase the predictive accuracy for progression-free survival (PFS) of PTC patients with RAI treatment. The expression profiles of mRNAs and miRNAs as well as the clinical information of PTC patients were extracted from TCGA and GEO databases. A series of bioinformatics methods were successfully applied to filtrate a two-RNA model (IPCEF1 and hsa-mir-486-5p) associated with the prognosis of RAI-therapy. Finally, the RNA-based risk score was calculated based on the Cox coefficient of the individual RNA, which achieved good performances by the time-dependent receiver operating characteristic (tROC) curve and PFS analyses. Furthermore, the predictive power of the nomogram, integrated with the risk score and clinical parameters (age at diagnosis and tumor stage), was assessed by tROC curves. Collectively, our study demonstrated high precision in predicting the RAI response of PTC patients.
Collapse
Affiliation(s)
- Lina Liu
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuhong Shi
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Qian Lai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yuan Huang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Xue Jiang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Qian Liu
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Ying Huang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuxiao Xia
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Dongkun Xu
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhiqiang Jiang
- Department of General Surgery, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wenling Tu
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Lin F, Han S, Yu W, Rao T, Ruan Y, Yuan R, Li H, Ning J, Xia Y, Xie J, Qi Y, Zhou X, Cheng F. microRNA‐486‐5p is implicated in the cisplatin‐induced apoptosis and acute inflammation response of renal tubular epithelial cells by targeting HAT1. J Biochem Mol Toxicol 2022; 36:e23039. [PMID: 35279909 DOI: 10.1002/jbt.23039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Fang‐You Lin
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Shang‐Ting Han
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Wei‐Min Yu
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Ting Rao
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yuan Ruan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Run Yuan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Hao‐Yong Li
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Zhuo Ning
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Qi Xia
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Na Xie
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Cheng Qi
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xiang‐Jun Zhou
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Fan Cheng
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|