1
|
Ishigooka G, Mizuno H, Oosuka S, Jin D, Takai S, Kida T. Effects of Angiotensin Receptor Blockers on Streptozotocin-Induced Diabetic Cataracts. J Clin Med 2023; 12:6627. [PMID: 37892765 PMCID: PMC10607684 DOI: 10.3390/jcm12206627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to determine the role of oxidative stress produced by the renin-angiotensin system (RAS) in cataract formation in streptozotocin-induced diabetic rats (STZ) using angiotensin II receptor blockers (ARBs). Rats were treated with streptozotocin and orally administered candesartan (2.5 mg/kg/day) or a normal diet for 10 weeks until sacrifice. Cataract progression was assessed through a slit-lamp examination. Animals were euthanized at 18 weeks, and the degree of cataract progression was evaluated. Oxidative stress was also assessed. In STZ-treated rats, lens opacity occurred at 12 weeks. Cataract progression was inhibited in the ARB-treated group compared with the placebo group (p < 0.05). STZ-treated rats exhibited upregulated angiotensin-converting enzyme (ACE) gene expression than control rats. Oxidative stress-related factors were upregulated in the placebo-treated group but suppressed in the ARB-treated group. A correlation coefficient test revealed a positive correlation between ACE gene expression and oxidative stress-related factors and a negative correlation between ACE and superoxide dismutase. Immunostaining revealed oxidative stress-related factors and advanced glycation end products in the lens cortex of the placebo-treated group. The mechanism of diabetic cataracts may be related to RAS, and the increase in focal ACE and angiotensin II in the lens promotes oxidative stress-related factor production.
Collapse
Affiliation(s)
- Gaku Ishigooka
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| | - Hiroshi Mizuno
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| | - Shou Oosuka
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| | - Denan Jin
- Department of Innovative Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| |
Collapse
|
2
|
Azrita A, Syandri H, Aryani N, Mardiah A. Effect of feed enriched by products formulated from coconut water, palm sap sugar, and mushroom on the chemical composition of feed and carcass, growth performance, body indices, and gut micromorphology of giant gourami, Osphronemus goramy (Lacepède, 1801), juveniles. F1000Res 2023; 12:140. [PMID: 37822317 PMCID: PMC10562794 DOI: 10.12688/f1000research.124706.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 01/08/2024] Open
Abstract
Background: Giant gourami, Osphronemus goramy is the most important freshwater fish species produced by aquaculture in Indonesia. This study aimed to the effects of various newly formulated products on the amino acid composition of the diet and whole-body carcass, and to analyse the growth coefficient, body indices, and gut micromorphology. Methods: One hundred gram of palm sap sugar was cooked in 1.1 litre of fresh water for fifteen minutes, to create 1 litre of 11% palm sap sugar solution (after some of it had been boiled off). Two litres of coconut water were then mixed with the litre of palm sugar solution. One litre of this product was added in turn to 2 g of Aspergillus niger (CP2), 2 g of Rhizopus oligosporus (CP3), and 2 g of Saccharomyces cerevisiae (CP4), while freshwater was used as a control (labeled CP1). Aquafeed was added to CP1, CP2, CP3, and CP4, to make diets labeled KP1, KP2, KP3, and KP4. The dosage was 150 ml/kg of feed. Juvenile giant gourami (initial weight 50±0.25 g and length 13.2±0.07 cm) were reared in triplicate net frames (2×1×1 m; water volume 1.5 m 3) in a freshwater concrete pond with a stocking density of 30 juveniles/net. Results: The results supported our hypothesis that different product formulations have a significant effect (P < 0.05) on aquafeed nutrition and the whole-body carcass, growth coefficient, feed utilization, body indices, and gut micromorphology of giant gourami juveniles. The thermal growth coefficient strongly correlated with the daily growth coefficient (r 2 = 92%), condition factor (r 2 = 77%), protein efficiency ratio (r 2 = 75%), while a moderate relationship with the feed intake ( r 2 = 69%). Conclusions: Diet KP3 contains higher total amino acids in diets and carcasses and leads to feed efficiency and better growth for giant gourami.
Collapse
Affiliation(s)
- Azrita Azrita
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25113, Indonesia
| | - Hafrijal Syandri
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25113, Indonesia
| | - Netti Aryani
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Ainul Mardiah
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Nahdlatul Ulama, Padang, West Sumatera, 25118, Indonesia
| |
Collapse
|
3
|
Azrita A, Syandri H, Aryani N, Mardiah A. Effect of feed enriched by products formulated from coconut water, palm sap sugar, and mushroom on the chemical composition of feed and carcass, growth performance, body indices, and gut micromorphology of giant gourami, Osphronemus goramy (Lacepède, 1801), juveniles. F1000Res 2023; 12:140. [PMID: 37822317 PMCID: PMC10562794 DOI: 10.12688/f1000research.124706.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Background: Giant gourami, Osphronemus goramy is the most important freshwater fish species produced by aquaculture in Indonesia. This study aimed to the effects of various newly formulated products on the amino acid composition of the diet and whole-body carcass, and to analyse the growth coefficient, body indices, and gut micromorphology. Methods: One hundred gram of palm sap sugar was cooked in 1.1 litre of fresh water for fifteen minutes, to create 1 litre of 11% palm sap sugar solution (after some of it had been boiled off). Two litres of coconut water were then mixed with the litre of palm sugar solution. One litre of this product was added in turn to 2 g of Aspergillus niger (CP2), 2 g of Rhizopus oligosporus (CP3), and 2 g of Saccharomyces cerevisiae (CP4), while freshwater was used as a control (labeled CP1). Aquafeed was added to CP1, CP2, CP3, and CP4, to make diets labeled KP1, KP2, KP3, and KP4. The dosage was 150 ml/kg of feed. Juvenile giant gourami (initial weight 50±0.25 g and length 13.2±0.07 cm) were reared in triplicate net frames (2×1×1 m; water volume 1.5 m 3) in a freshwater concrete pond with a stocking density of 30 juveniles/net. Results: The results supported our hypothesis that different product formulations have a significant effect (P < 0.05) on aquafeed nutrition and the whole-body carcass, growth coefficient, feed utilization, body indices, and gut micromorphology of giant gourami juveniles. The thermal growth coefficient strongly correlated with the daily growth coefficient (r 2 = 92%), condition factor (r 2 = 77%), protein efficiency ratio (r 2 = 75%), while a moderate relationship with the feed intake ( r 2 = 69%). Conclusions: Diet KP3 contains higher total amino acids in diets and carcasses and leads to feed efficiency and better growth for giant gourami.
Collapse
Affiliation(s)
- Azrita Azrita
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25113, Indonesia
| | - Hafrijal Syandri
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25113, Indonesia
| | - Netti Aryani
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Ainul Mardiah
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Nahdlatul Ulama, Padang, West Sumatera, 25118, Indonesia
| |
Collapse
|
4
|
Amanfo AF, Kyei S, Boakye YD, Akoto CO, Addo JK, Yeboah KO, Osafo N. The Aqueous Stem Bark Extract of Alstonia boonei Exhibits Anticataract Activity in Sprague Dawley Rat. SCIENTIFICA 2023; 2023:5524137. [PMID: 37560323 PMCID: PMC10409581 DOI: 10.1155/2023/5524137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In Africa, Alstonia boonei is used folklorically for the management of the multitude of conditions including cataract, which accounts for 50% of cases of blindness in the region. The current study set out to probe the traditional use of the aqueous extract of Alstonia boonei stem bark (ABE) as an anticataract remedy using Sprague Dawley rat models. We investigated the probable phytochemical constituents in the extract, in vitro antioxidant potential, and its in vitro aldose reductase inhibition. For the anticataract investigations, diabetic cataract was induced using galactose in 3-week-old Sprague Dawley rats, and age-related cataract was induced by the administration of sodium selenite to 10-day-old rat pups. Cataract scores in both models were determined after treatment with 30, 100, and 300 mgkg-1 doses of ABE and 10 mlkg-1 of distilled water. Lens glutathione, total lens protein, soluble lens proteins (alpha-A) crystallin, and aquaporin 0 levels in the enucleated lens homogenates were determined. Changes in lens to body weight were also determined with histopathological analysis done on the lenses in the selenite-induced cataract model. The presence of alkaloids, tannins, flavonoids, glycosides, and triterpenoids was identified in the extract. The extract inhibited aldose reductase activity with IC50 of 92.30 μgml-1. The 30, 100, and 300 mgkg-1ABE-treated rats recorded significantly (p < 0.05) reduced cataract scores indicating a delay in cataractogenesis in galactose-induced cataract and in selenite-induced cataractogenesis as well. Markers of lens transparency such as AQP0, alpha-A crystallin, and total lens proteins and lens glutathione levels were significantly (p < 0.05) preserved. In conclusion, this study establishes the anticataract potential of the aqueous stem bark extract of Alstonia boonei in Sprague Dawley rat models.
Collapse
Affiliation(s)
- Adwoa Frema Amanfo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Kyei
- Department of Optometry and Vision Science, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, University of Cape Coast, Cape Coast, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, College of Science, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | | | - Kofi Oduro Yeboah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Newman Osafo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
5
|
Circular RNA circ_0024037 suppresses high glucose-induced lens epithelial cell injury by targeting the miR-199a-5p/TP53INP1 axis. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Nagaya M, Kanada F, Takashima M, Takamura Y, Inatani M, Oki M. Atm inhibition decreases lens opacity in a rat model of galactose-induced cataract. PLoS One 2022; 17:e0274735. [PMID: 36149903 PMCID: PMC9506662 DOI: 10.1371/journal.pone.0274735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cataract causes vision loss and blindness due to formation of opacities of the lens. The regulatory mechanisms of cataract formation and progression remain unclear, and no effective drug treatments are clinically available. In the present study, we tested the effect of ataxia telangiectasia mutated (Atm) inhibitors using an ex vivo model in which rat lenses were cultured in galactose-containing medium to induce opacity formation. After lens opacities were induced by galactose, the lenses were further incubated with the Atm inhibitors AZD0156 or KU55933, which decreased lens opacity. Subsequently, we used microarray analysis to investigate the underlying molecular mechanisms of action, and extracted genes that were upregulated by galactose-induced opacity, but not by inhibitor treatment. Quantitative measurement of mRNA levels and subsequent STRING analysis revealed that a functional network consisting primarily of actin family and actin-binding proteins was upregulated by galactose treatment and downregulated by both Atm inhibitors. In particular, Acta2 is a known marker of epithelial-mesenchymal transition (EMT) in epithelial cells, and other genes connected in this functional network (Actn1, Tagln, Thbs1, and Angptl4) also suggested involvement of EMT. Abnormal differentiation of lens epithelial cells via EMT could contribute to formation of opacities; therefore, suppression of these genes by Atm inhibition is a potential therapeutic target for reducing opacities and alleviating cataract-related visual impairment.
Collapse
Affiliation(s)
- Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Fumito Kanada
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
7
|
Yang C, Miao A, Yang C, Huang C, Chen H, Jiang Y, Deng C, Sun N. Precise Detection of Cataracts with Specific High-Risk Factors by Layered Binary Co-Ionizers Assisted Aqueous Humor Metabolic Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105905. [PMID: 35621284 PMCID: PMC9313487 DOI: 10.1002/advs.202105905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Diabetes and high myopia as well-known high-risk factors can aggravate cataracts, yet clinical coping strategy remains a bottleneck. Metabolic analysis tends to be powerful for precisely detection and mechanism exploration since most of diseases including cataracts are accompanied by metabolic disorder. Herein, a layered binary co-ionizers assisted aqueous humor metabolic analysis tool is proposed for potentially etiological typing and detection of cataracts, including age-related cataracts (ARC), cataracts with diabetes mellitus (CDM), and cataracts with high myopia (CHM). Startlingly, taking advantage of the optimal machine learning algorithm and all metabolic fingerprints, 100% of accuracy, precision, and recall rates are achieved for arbitrary comparison between groups. Moreover, 11, 9, and 7 key metabolites with explicit identities are confirmed as markers of discriminating CDM from ARC, CHM from ARC, and CDM from CHM, and the corresponding area under the curve values of validation cohorts are 0.985, 1.000, and 1.000. Finally, the critical impact of diabetes/high myopia on cataracts is revealed by excavating the change levels and metabolic pathways of key metabolites. This work updates the insights of prevention and treatment about cataracts at metabolic level and throws out huge surprises and progresses metabolic diagnosis toward a reality.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Aizhu Miao
- Eye Institute and Department of Ophthalmology, Eye & ENT HospitalFudan UniversityShanghai200031China
| | - Chaochao Yang
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Chuwen Huang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Haolin Chen
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Yongxiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT HospitalFudan UniversityShanghai200031China
| | - Chunhui Deng
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Nianrong Sun
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
8
|
Borymska W, Zych M, Dudek S, Kaczmarczyk-Sedlak I. Silymarin from Milk Thistle Fruits Counteracts Selected Pathological Changes in the Lenses of Type 1 Diabetic Rats. Nutrients 2022; 14:1450. [PMID: 35406062 PMCID: PMC9003010 DOI: 10.3390/nu14071450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a metabolic disease affecting many tissues and organs. The main etiological factor for diabetic complications is hyperglycemia and subsequent pathologies, such as oxidative stress. One of the organs susceptible to the development of diabetic complications is the eye with all of its elements, including the lens. The aim of this study was to evaluate the effect of silymarin, an extract obtained from milk thistle fruit husks, on the oxidative stress markers in the lenses of type 1 diabetic rats. The study was performed on male rats in which type 1 diabetes was induced with 60 mg/kg streptozotocin injection. Diabetic animals were treated via an intragastric tube with silymarin at 50 and 100 mg/kg doses for four weeks. Multiple oxidative stress and polyol pathway-related parameters were measured in the lenses, and auxiliary biochemical tests in the serum were conducted. Diabetes induced severe pathological changes both in the lenses and the serum, and silymarin counteracted several of them. Nevertheless, the qualitative analyses encompassing all tested parameters indicate that silymarin slightly improved the overall state of diabetic animals. Upon the obtained results, it can be concluded that silymarin reveals a faint positive effect on the lenses in type 1 diabetic rats.
Collapse
Affiliation(s)
- Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.Z.); (S.D.); (I.K.-S.)
| | | | | | | |
Collapse
|