1
|
Hanko EKR, Robinson CJ, Bhanot S, Jervis AJ, Scrutton NS. Engineering an Escherichia coli strain for enhanced production of flavonoids derived from pinocembrin. Microb Cell Fact 2024; 23:312. [PMID: 39558341 PMCID: PMC11575205 DOI: 10.1186/s12934-024-02582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Flavonoids are a structurally diverse group of secondary metabolites, predominantly produced by plants, which include a range of compounds with pharmacological importance. Pinocembrin is a key branch point intermediate in the biosynthesis of a wide range of flavonoid subclasses. However, replicating the biosynthesis of these structurally diverse molecules in heterologous microbial cell factories has encountered challenges, in particular the modest pinocembrin titres achieved to date. In this study, we combined genome engineering and enzyme candidate screening to significantly enhance the production of pinocembrin and its derivatives, including chrysin, pinostrobin, pinobanksin, and galangin, in Escherichia coli. RESULTS By implementing a combination of established strain engineering strategies aimed at enhancing the supply of the building blocks phenylalanine and malonyl-CoA, we constructed an E. coli chassis capable of accumulating 353 ± 19 mg/L pinocembrin from glycerol, without the need for precursor supplementation or the fatty acid biosynthesis inhibitor cerulenin. This chassis was subsequently employed for the production of chrysin, pinostrobin, pinobanksin, and galangin. Through an enzyme candidate screening process involving eight type-1 and five type-2 flavone synthases (FNS), we identified Petroselinum crispum FNSI as the top candidate, producing 82 ± 5 mg/L chrysin. Similarly, from a panel of five flavonoid 7-O-methyltransferases (7-OMT), we found pinocembrin 7-OMT from Eucalyptus nitida to yield 153 ± 10 mg/L pinostrobin. To produce pinobanksin, we screened seven enzyme candidates exhibiting flavanone 3-hydroxylase (F3H) or F3H/flavonol synthase (FLS) activity, with the bifunctional F3H/FLS enzyme from Glycine max being the top performer, achieving a pinobanksin titre of 12.6 ± 1.8 mg/L. Lastly, by utilising a combinatorial library of plasmids encoding G. max F3H and Citrus unshiu FLS, we obtained a maximum galangin titre of 18.2 ± 5.3 mg/L. CONCLUSION Through the integration of microbial chassis engineering and screening of enzyme candidates, we considerably increased the production levels of microbially synthesised pinocembrin, chrysin, pinostrobin, pinobanksin, and galangin. With the introduction of additional chassis modifications geared towards improving cofactor supply and regeneration, as well as alleviating potential toxic effects of intermediates and end products, we anticipate further enhancements in the yields of these pinocembrin derivatives, potentially enabling greater diversification in microbial hosts.
Collapse
Affiliation(s)
- Erik K R Hanko
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Christopher J Robinson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sahara Bhanot
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Adrian J Jervis
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
2
|
Rossi M, Pellegrino C, Rydzyk MM, Farruggia G, de Biase D, Cetrullo S, D'Adamo S, Bisi A, Blasi P, Malucelli E, Cappadone C, Gobbi S. Chalcones induce apoptosis, autophagy and reduce spreading in osteosarcoma 3D models. Biomed Pharmacother 2024; 179:117284. [PMID: 39151310 DOI: 10.1016/j.biopha.2024.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy with a challenging prognosis marked by a high rate of metastasis. The limited success of current treatments may be partially attributed to an incomplete understanding of osteosarcoma pathophysiology and to the absence of reliable in vitro models to select the best molecules for in vivo studies. Among the natural compounds relevant for osteosarcoma treatment, Licochalcone A (Lic-A) and chalcone derivatives are particularly interesting. Here, Lic-A and selected derivatives have been evaluated for their anticancer effect on multicellular tumor spheroids from MG63 and 143B osteosarcoma cell lines. A metabolic activity assay revealed Lic-A, 1i, and 1k derivatives as the most promising candidates. To delve into their mechanism of action, caspase activity assay was conducted in 2D and 3D in vitro models. Notably, apoptosis and autophagic induction was generally observed for Lic-A and 1k. The invasion assay demonstrated that Lic-A and 1k possess the ability to mitigate the spread of osteosarcoma cells within a matrix. The effectiveness of chalcone as a natural scaffold for generating potential antiproliferative agents against osteosarcoma has been demonstrated. In particular, chalcones exert their antiproliferative activity by inducing apoptosis and autophagy, and in addition they are capable of reducing cell invasion. These findings suggest Lic-A and 1k as promising antitumor agents against osteosarcoma cells.
Collapse
Affiliation(s)
- M Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - C Pellegrino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - M M Rydzyk
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - G Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - D de Biase
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - S Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna 40126, Italy
| | - S D'Adamo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - A Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - P Blasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - E Malucelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - C Cappadone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy.
| | - S Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| |
Collapse
|
3
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
4
|
Inacio KK, Pessoa ADS, Tokuhara CK, Pagnan AL, Sanches MLR, Fakhoury VS, Oliveira GSND, Oliveira FAD, Ximenes VF, Oliveira RCD. Menadione and protocatechuic acid: A drug combination with antitumor effects in murine osteosarcoma cells. Arch Biochem Biophys 2024; 751:109840. [PMID: 38040223 DOI: 10.1016/j.abb.2023.109840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that has an abnormal expression of oncogenesis and tumor suppressors and causes dysregulation of various signaling pathways. Thus, novel therapeutic strategies for OS are needed to overcome the resistance of traditional treatments. This study evaluated the cytotoxic and anticancer effects of the association between menadione (MEN) and protocatechuic acid (PCA) in murine OS cells (UMR-106). The concentrations were 3.12 μM of isolated MEN, 500 μM of isolated PCA, and their associations. We performed cell viability assays, morphology modification analysis, cell migration by the wound-healing method, apoptosis by flow cytometry, reactive oxygen species (ROS) production, gene expression of NOX by RT-qPCR, and degradation of MMP-2 and 9 by zymography. Our results showed that the association of MEN+PCA was more effective in OS cells than the compounds alone. The association decreased cell viability, delayed cell migration, and decreased the expression of NOX-2 and ROS. In addition, the MEN+PCA association induced a slight increase in the apoptotic process. In summary, the association can enhance the compound's antitumor effects and establish a higher selectivity for tumor cells, possibly caused by significant mitochondrial damage and antioxidant properties.
Collapse
Affiliation(s)
- Kelly Karina Inacio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Adriano de Souza Pessoa
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Cintia Kazuko Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Ana Lígia Pagnan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | | | | | | | - Flavia Amadeu de Oliveira
- Sanford Children's Health Research Center. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP, São Paulo State University, Bauru, São Paulo, Brazil
| | | |
Collapse
|
5
|
Yun C, Zhang J, Morigele. miR-488-3p Represses Malignant Behaviors and Facilitates Autophagy of Osteosarcoma Cells by Targeting Neurensin-2. Curr Pharm Biotechnol 2024; 25:1264-1275. [PMID: 37365792 DOI: 10.2174/1389201024666230626102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES Osteosarcoma (OS) is a primary bone sarcoma that primarily affects children and adolescents and poses significant challenges in terms of treatment. microRNAs (miRNAs) have been implicated in OS cell growth and regulation. This study sought to investigate the role of hsa-miR-488-3p in autophagy and apoptosis of OS cells. METHODS The expression of miR-488-3p was examined in normal human osteoblasts and OS cell lines (U2OS, Saos2, and OS 99-1) using RT-qPCR. U2OS cells were transfected with miR-488- 3p-mimic, and cell viability, apoptosis, migration, and invasion were assessed using CCK-8, flow cytometry, and Transwell assays, respectively. Western blotting and immunofluorescence were employed to measure apoptosis- and autophagy-related protein levels, as well as the autophagosome marker LC3. The binding sites between miR-488-3p and neurensin-2 (NRSN2) were predicted using online bioinformatics tools and confirmed by a dual-luciferase assay. Functional rescue experiments were conducted by co-transfecting miR-488-3p-mimic and pcDNA3.1-NRSN2 into U2OS cells to validate the effects of the miR-488-3p/NRSN2 axis on OS cell behaviors. Additionally, 3-MA, an autophagy inhibitor, was used to investigate the relationship between miR- 488-3p/NRSN2 and cell apoptosis and autophagy. RESULTS miR-488-3p was found to be downregulated in OS cell lines, and its over-expression inhibited the viability, migration, and invasion while promoting apoptosis of U2OS cells. NRSN2 was identified as a direct target of miR-488-3p. Over-expression of NRSN2 partially counteracted the inhibitory effects of miR-488-3p on malignant behaviors of U2OS cells. Furthermore, miR- 488-3p induced autophagy in U2OS cells through NRSN2-mediated mechanisms. The autophagy inhibitor 3-MA partially reversed the effects of the miR-488-3p/NRSN2 axis in U2OS cells. CONCLUSION Our findings demonstrate that miR-488-3p suppresses malignant behaviors and promotes autophagy in OS cells by targeting NRSN2. This study provides insights into the role of miR-488-3p in OS pathogenesis and suggests its potential as a therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Chao Yun
- Department of Orthopedics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Mongolia, China
| | - Jincai Zhang
- Department of Orthopedics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Mongolia, China
| | - Morigele
- Department of Orthopedics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Mongolia, China
| |
Collapse
|
6
|
Chen Z, Ni R, Hu Y, Yang Y, Tian Y. Arnicolide D Inhibits Proliferation and Induces Apoptosis of Osteosarcoma Cells through PI3K/Akt/mTOR Pathway. Anticancer Agents Med Chem 2024; 24:1288-1294. [PMID: 38967079 DOI: 10.2174/0118715206289595240105082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine Centipeda minima (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear. OBJECTIVE This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS. METHODS Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms. RESULTS Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells. CONCLUSION Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Renhua Ni
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yiyuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
7
|
Hong X, Fu R. Construction of a 5-gene prognostic signature based on oxidative stress related genes for predicting prognosis in osteosarcoma. PLoS One 2023; 18:e0295364. [PMID: 38039294 PMCID: PMC10691720 DOI: 10.1371/journal.pone.0295364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The understanding of the complex biological scenario of osteosarcoma will open the way to identifying new strategies for its treatment. Oxidative stress is a cancer-related biological scenario. At present, it is not clear the oxidative stress genes in affecting the prognosis and progression of osteosarcoma, the underlying mechanism as well as their impact on the classification of osteosarcoma subtypes. METHODS We selected samples and sequencing data from TARGET data set and GSE21257 data set, and downloaded oxidative stress related-genes (OSRGs) from MsigDB. Univariate Cox analysis of OSRG was conducted using TARGET data, and the prognostic OSRG was screened to conduct unsupervised clustering analysis to identify the molecular subtypes of osteosarcoma. Through least absolute shrinkage and selection operator (LASSO) regression analysis and COX regression analysis of differentially expressed genes (DEGs) between subgroups, a risk assessment system for osteosarcoma was developed. RESULTS 45 prognosis-related OSRGs genes were acquired, and two molecular subtypes of osteosarcoma were clustered. C2 cluster displayed prolonged overall survival (OS) accompanied with high degree of immune infiltration and enriched immune pathways. While cell cycle related pathways were enriched in C2 cluster. Based on DEGs between subgroups and Lasso analysis, 5 hub genes (ZYX, GJA5, GAL, GRAMD1B, and CKMT2) were screened to establish a robust prognostic risk model independent of clinicopathological features. High-risk group had more patients with cancer metastasis and death as well as C1 subtype with poor prognosis. Low-risk group exhibited favorable OS and high immune infiltration status. Additionally, the risk assessment system was optimized by building decision tree and nomogram. CONCLUSIONS This study defined two molecular subtypes of osteosarcoma with different prognosis and tumor immune microenvironment status based on the expression of OSRGs, and provided a new risk assessment system for the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaofang Hong
- Department of Stomatology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ribin Fu
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Tajvar Nasab N, Jalili-Nik M, Afshari AR, Rezaei Farimani A, Soukhtanloo M. Urolithin B inhibits proliferation and migration and promotes apoptosis and necrosis by inducing G2/M arrest and targeting MMP-2/-9 expression in osteosarcoma cells. J Biochem Mol Toxicol 2023; 37:e23486. [PMID: 37555500 DOI: 10.1002/jbt.23486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Osteosarcoma (OS) is the most prevalent primary bone cancer, with a high morbidity and mortality rate. Over the past decades, therapeutic approaches have not considerably improved patients' survival rates, and further research is required to find efficient treatments for OS. Data from several studies have shown that urolithin B (UB), the intestinal metabolite of polyphenolic ellagitannins, is emerging as a new class of anticancer compounds, yet its effect on OS cancer cells remains elusive. Herein, we investigated UB's antimetastatic, antiproliferative, and apoptotic effects on the MG-63 OS cell line. Cell viability assay, annexin V/propidium iodide staining, cell cycle arrest analysis, determination of the gene expression of MMP-2, MMP-9, Bax, Bcl-2, and p53 messenger RNA (mRNA), evaluation of reactive oxygen species (ROS) generation and migration, and MMP-2 and MMP-9 protein expression assessments were performed. UB caused late apoptosis, necrosis, G2/M arrest, and ROS generation in MG-63 cells. It increased the mRNA expression of the p53 tumor suppressor and Bax proapoptotic genes. UB also inhibited the migration and metastatic behavior of MG-63 OS cells by downregulating mRNA and MMP-2 and MMP-9 protein expression. In general, although further in vivo investigations are warranted, the current results showed that UB might be utilized as a potential novel natural compound for OS therapy due to its nontoxic, antiproliferative, and antimetastatic nature.
Collapse
Affiliation(s)
- Nahid Tajvar Nasab
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azam Rezaei Farimani
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Kushram P, Majumdar U, Bose S. Hydroxyapatite coated titanium with curcumin and epigallocatechin gallate for orthopedic and dental applications. BIOMATERIALS ADVANCES 2023; 155:213667. [PMID: 37979438 PMCID: PMC11132588 DOI: 10.1016/j.bioadv.2023.213667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Titanium and its alloy are clinically used as an implant material for load-bearing applications to treat bone defects. However, the lack of biological interaction between bone tissue and implant and the risk of infection are still critical challenges in clinical orthopedics. In the current work, we have developed a novel approach by first 1) modifying the implant surface using hydroxyapatite (HA) coating to enhance bioactivity and 2) integrating curcumin and epigallocatechin gallate (EGCG) in the coating that would induce chemopreventive and osteogenic potential and impart antibacterial properties to the implant. The study shows that curcumin and EGCG exhibit controlled and sustained release profiles in acidic and physiological environments. Curcumin and EGCG also show in vitro cytotoxicity toward osteosarcoma cells after 11 days, and the dual system shows a ~94 % reduction in bacterial growth, indicating their in vitro chemopreventive potential and antibacterial efficacy. The release of both curcumin and EGCG was found to be compatible with osteoblast cells and further promotes their growth. It shows a 3-fold enhancement in cellular viability in the dual drug-loaded implant compared to the untreated samples. These findings suggest that multifunctional HA-coated Ti6Al4V implants integrated with curcumin and EGCG could be a promising strategy for osteosarcoma inhibition and osteoblast cell growth while preventing infection.
Collapse
Affiliation(s)
- Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Ujjayan Majumdar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.
| |
Collapse
|
10
|
Racea RC, Macasoi IG, Dinu S, Pinzaru I, Marcovici I, Dehelean C, Rusu LC, Chioran D, Rivis M, Buzatu R. Eugenol: In Vitro and In Ovo Assessment to Explore Cytotoxic Effects on Osteosarcoma and Oropharyngeal Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3549. [PMID: 37896013 PMCID: PMC10610311 DOI: 10.3390/plants12203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Cancer is a significant health problem worldwide; consequently, new therapeutic alternatives are being investigated, including those found in the vegetable kingdom. Eugenol (Eug) has attracted attention for its therapeutic properties, especially in stomatology. The purpose of this study was to investigate the cytotoxicity of Eug, in vitro, on osteosarcoma (SAOS-2) and oropharyngeal squamous cancer (Detroit-562) cells, as well as its potential irritant effect in ovo at the level of the chorioallantoic membrane (CAM). The data obtained following a 72 h Eug treatment highlighted the reduction in cell viability up to 41% in SAOS-2 cells and up to 37% in Detroit-562 cells, respectively. The apoptotic-like effect of Eug was indicated by the changes in cell morphology and nuclear aspect; the increase in caspase-3/7, -8 and -9 activity; the elevated expression of Bax and Bad genes; and the increase in luminescence signal (indicating phosphatidylserine externalization) that preceded the increase in fluorescence signal (indicating the compromise of membrane integrity). Regarding the vascular effects, slight signs of coagulation and vascular lysis were observed, with an irritation score of 1.69 for Eug 1 mM. Based on these results, the efficiency of Eug in cancer treatment is yet to be clarified.
Collapse
Affiliation(s)
- Robert-Cosmin Racea
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana-Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Doina Chioran
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
| | - Mircea Rivis
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
| |
Collapse
|
11
|
Britina G, Ezhilarasan D, Shree Harini K. Nelumbo nucifera Leaf Extract Induces Cytotoxicity in Osteosarcoma Saos-2 Cells. Cureus 2023; 15:e47609. [PMID: 38021731 PMCID: PMC10667573 DOI: 10.7759/cureus.47609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Osteosarcoma is the eighth most common cancer and its prevalence in children makes it a global concern. Existing medications and treatments like high-dose methotrexate possess harmful side effects. Therefore, novel herbal drugs like Nelumbo nucifera are of utmost importance. Aim To analyze a novel anticancer herbal drug, Nelumbo nucifera leaf extract for its cytotoxic potential against osteosarcoma. Materials and method Nelumbo nucifera leaf extract was prepared. Saos-2 Cells (human osteosarcoma cell line) were treated with Nelumbo nucifera leaf extract (25, 50, 75, 100, 125, and 150 µg/ml) for 24 hours which were then subjected to MTT assay, morphological analysis and DAPI staining. Results The results suggested that Nelumbo nucifera leaf extract had a concentration-dependent cytotoxic effect on Saos-2 cell line. The extract significantly reduced the number of viable cells, inhibited proliferation and induced morphological changes in Saos-2 cells. Conclusion Nelumbo nucifera has the potential to induce cytotoxicity against osteosarcoma cell lines and hence, this study provides a novel therapeutic regimen for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Gautam Britina
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Devaraj Ezhilarasan
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthik Shree Harini
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
12
|
Liu Z, Wang X, Li J, Yang X, Huang J, Ji C, Li X, Li L, Zhou J, Hu Y. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway. Chem Biol Interact 2023; 382:110602. [PMID: 37302459 DOI: 10.1016/j.cbi.2023.110602] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with extremely poor prognosis. Gambogenic acid (GNA), one of the major bioactive ingredients isolated from Gamboge, has been shown to possess a multipotent antitumor effect, its activity on OS remains unclear yet. In this study, we found that GNA could trigger multiple cell death modalities, including ferroptosis and apoptosis in human OS cells, reduce the cell viability, inhibit the proliferation and invasiveness. Furthermore, GNA provoked oxidative stress leading to GSH depletion-inducing ROS generation and lipid peroxidation, altered iron metabolism represented by the induction of labile iron, mitochondrial membrane potential decreased, mitochondrial morphological changed, decreased the cell viability. In addition, ferroptosis inhibitors (Fer-1) and apoptosis inhibitors (NAC) can partially reversed GNA' s effects on OS cells. Further investigation showed that GNA augmented the expression of P53, bax, caspase 3 and caspase 9 and decreased the expression of Bcl-2, SLC7A11 and glutathione peroxidase-4 (GPX4). In vivo, GNA was showed to delay tumor growth significantly in axenograft osteosarcoma mouse model. In conclusion, this study reveals that GNA simultaneously triggers ferroptosis and apoptosis in human OS cells by inducing oxidative stress via the P53/SLC7A11/GPX4 axis.
Collapse
Affiliation(s)
- Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Chuang Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Lan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
13
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
14
|
Feng L, Gu J, Yang Y, Yang B, Shi R. Editorial: Exploring the therapeutic effects of synthetic, semi-synthetic and naturally derived compounds against cancer. Front Pharmacol 2023; 14:1251835. [PMID: 37675047 PMCID: PMC10478079 DOI: 10.3389/fphar.2023.1251835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Liang Feng
- State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junfei Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yanjun Yang
- State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bing Yang
- State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruyu Shi
- State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Zhu WT, Zeng XF, Yang H, Jia ML, Zhang W, Liu W, Liu SY. Resveratrol Loaded by Folate-Modified Liposomes Inhibits Osteosarcoma Growth and Lung Metastasis via Regulating JAK2/STAT3 Pathway. Int J Nanomedicine 2023; 18:2677-2691. [PMID: 37228445 PMCID: PMC10204760 DOI: 10.2147/ijn.s398046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background Osteosarcoma is a malignant bone tumor with a high rate of lung metastasis and mortality. It has been demonstrated that resveratrol can inhibit tumor proliferation and metastasis, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare folate-modified liposomes loaded with resveratrol to investigate its anti-osteosarcoma effect in vitro and in vivo. Methods We prepared and characterized resveratrol liposomes modified with folate (denoted as, FA-Res/Lps). The effects of FA-Res/Lps on human osteosarcoma cell 143B proliferation, apoptosis, and migration were investigated by MTT, cell cloning, wound-healing assay, transwell, and flow cytometry. A xenograft tumor and lung metastasis model of osteosarcoma was constructed to study the therapeutic effects of FA-Res/Lps on the growth and metastasis of osteosarcoma in vivo. Results The FA-Res/Lps were prepared with a particle size of 118.5 ± 0.71 and a small dispersion coefficient of 0.154 ± 0.005. We found that FA-modified liposomes significantly increased resveratrol uptake by osteosarcoma cells 143B in flow cytometric assay, resulting in FA-Res/Lps, which inhibit tumor proliferation, migration and induce apoptosis more effectively than free Res and Res/Lps. The mechanism of action may be associated with the inhibition of JAK2/STAT3 signaling. In vivo imaging demonstrated that FA-modified DiR-modified liposomes significantly increased the distribution of drugs at the tumor site, leading to significant inhibition of osteosarcoma growth and metastasis by FA-Res/Lps. Furthermore, we found that FA-Res/Lps did not cause any adverse effects on mice body weight, liver, or kidney tissues. Conclusion Taken together, the anti-osteosarcoma effect of resveratrol is significantly enhanced when it is loaded into FA-modified liposomes. FA-Res/Lps is a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Wen Ting Zhu
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People’s Republic of China
| | - Xiang Feng Zeng
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hua Yang
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Meng Lei Jia
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People’s Republic of China
| | - Wei Zhang
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Sheng Yao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
| |
Collapse
|
16
|
Wang D, Wang Y, Wang H, Yang Y, Li L, Liu Y, Yin X. Hsa_circ_0000591 drives osteosarcoma glycolysis and progression by sequestering miR-194-5p and elevating HK2 expression. Clin Exp Pharmacol Physiol 2023; 50:463-475. [PMID: 36809521 DOI: 10.1111/1440-1681.13763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Osteosarcoma (OS) is the most common bone tumour with a high risk of metastatic progression and recurrence after treatment. Circular RNA hsa_circ_0000591 (circ_0000591) plays a compelling role in OS aggressiveness. However, the function and regulatory mechanism of circ_0000591 need to be further elucidated. As a subject of this study, a differential circRNA circ_0000591 was screened by circRNA microarray expression profiling (GSE96964). Expression changes of circ_0000591 were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Effects of circ_0000591 silencing on OS cell viability, proliferation, colony formation, apoptosis, invasion, and glycolysis were determined via functional experiments. The mechanism by which circ_0000591 functions as a molecular sponge for miRNAs was predicted using bioinformatics analysis and validated using dual-luciferase reporter and RNA pull-down assays. Xenograft assay was done to validate the function of circ_0000591. Circ_0000591 was strongly expressed in OS samples and cells. Silencing of circ_0000591 lessened cell viability, repressed cell proliferation, invasion, glycolysis, and promoted cell apoptosis. Importantly, circ_0000591 regulated HK2 expression by serving as a miR-194-5p molecular sponge. MiR-194-5p silencing impaired circ_0000591 downregulation-mediated suppression of OS cell malignancy and glycolysis. HK2 overexpression weakened the inhibiting impacts of miR-194-5p on OS cell malignancy and glycolysis. Also, circ_0000591 silencing decreased xenograft tumour growth in vivo. Circ_0000591 drove OS glycolysis and growth by upregulating HK2 by sequestering miR-194-5p. The study highlighted the tumour-promoting function of circ_0000591 in OS.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yang Wang
- Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| | - Huadong Wang
- Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yafeng Yang
- Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Li Li
- Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yihao Liu
- Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Xin Yin
- Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Giacomini I, Cortini M, Tinazzi M, Baldini N, Cocetta V, Ragazzi E, Avnet S, Montopoli M. Contribution of Mitochondrial Activity to Doxorubicin-Resistance in Osteosarcoma Cells. Cancers (Basel) 2023; 15:cancers15051370. [PMID: 36900165 PMCID: PMC10000149 DOI: 10.3390/cancers15051370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Osteosarcoma is considered the most common bone tumor affecting children and young adults. The standard of care is chemotherapy; however, the onset of drug resistance still jeopardizes osteosarcoma patients, thus making it necessary to conduct a thorough investigation of the possible mechanisms behind this phenomenon. In the last decades, metabolic rewiring of cancer cells has been proposed as a cause of chemotherapy resistance. Our aim was to compare the mitochondrial phenotype of sensitive osteosarcoma cells (HOS and MG-63) versus their clones when continuously exposed to doxorubicin (resistant cells) and identify alterations exploitable for pharmacological approaches to overcome chemotherapy resistance. Compared with sensitive cells, doxorubicin-resistant clones showed sustained viability with less oxygen-dependent metabolisms, and significantly reduced mitochondrial membrane potential, mitochondrial mass, and ROS production. In addition, we found reduced expression of TFAM gene generally associated with mitochondrial biogenesis. Finally, combined treatment of resistant osteosarcoma cells with doxorubicin and quercetin, a known inducer of mitochondrial biogenesis, re-sensitizes the doxorubicin effect in resistant cells. Despite further investigations being needed, these results pave the way for the use of mitochondrial inducers as a promising strategy to re-sensitize doxorubicin cytotoxicity in patients who do not respond to therapy or reduce doxorubicin side effects.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Margherita Cortini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Mattia Tinazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Correspondence: (S.A.); (M.M.)
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland
- Correspondence: (S.A.); (M.M.)
| |
Collapse
|