1
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
2
|
Liu G, Wang YH, Zhang T, Li YQ, Chen XY, Dong W, Li W, Miao QX, Qiao WB, Tian HQ, Yin SL. Astragaloside-IV promotes autophagy via the Akt/mTOR pathway to improve cellular lipid deposition. Medicine (Baltimore) 2024; 103:e37846. [PMID: 38640324 PMCID: PMC11030007 DOI: 10.1097/md.0000000000037846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
The current study aimed to investigate the potential role of astragaloside IV (AS-IV) in improving cellular lipid deposition and its underlying mechanism. A fatty liver cell model was established by treating hepatoma cells with palmitic acid. AS-IV and SC79 were used for treatment. Oil Red O staining was applied to detect intracellular lipid deposition, and transmission electron microscopy was utilized to assess autophagosome formation. Immunofluorescence double staining was applied to determine microtubule-associated proteins 1A/1B light chain 3 (LC3) expression. Western blot analysis was performed to detect the expression of LC3, prostacyclin, Beclin-1, V-akt murine thymoma viral oncogene homolog (Akt), phosphorylated Akt, mTOR, and phosphorylated mTOR. Oil Red O staining revealed that AS-IV reduced intracellular lipid accumulation. Further, it increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in the cells. It also reduced the phosphorylation levels of Akt and mTOR and the levels of prostacyclin. However, the effects of AS-IV decreased with SC79 treatment. In addition, LC3B + BODIPY493/503 fluorescence double staining showed that AS-IV reduced intracellular lipid deposition levels by enhancing autophagy. AS-IV can reduce lipid aggregation in fatty liver cells, which can be related to enhanced hepatocyte autophagy by inhibiting the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guo Liu
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Ye-Hui Wang
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
- Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ting Zhang
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Ya-Qiong Li
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Xin-Yue Chen
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Wei Dong
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Wei Li
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Qi-Xiang Miao
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Wen-Bo Qiao
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Hui-Qiang Tian
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Shi-Long Yin
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Jiang YJ, Cao YM, Cao YB, Yan TH, Jia CL, He P. A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:1511-1521. [PMID: 38586542 PMCID: PMC10997053 DOI: 10.2147/dmso.s449494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.
Collapse
Affiliation(s)
- Yu-Jie Jiang
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Ye-Ming Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Tian-Hua Yan
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Ping He
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| |
Collapse
|
4
|
Zhang F, Wu R, Liu Y, Dai S, Xue X, Gong X, Li Y. Comparative Pharmacokinetic Study of Rhubarb Anthraquinones in Normal and Nonalcoholic Fatty Liver Disease Rats. Eur J Drug Metab Pharmacokinet 2024; 49:111-121. [PMID: 38112917 DOI: 10.1007/s13318-023-00875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Rhubarb anthraquinones contain five main components, that is, rhein, emodin, aloe-emodin, chrysophanol, and physcion, which demonstrate good therapeutic effects on nonalcoholic fatty liver disease (NAFLD). However, research on its pharmacokinetics in NAFLD remains lacking. This study aimed to investigate the pharmacokinetic differences of rhubarb anthraquinones in normal and NAFLD rats. METHODS This study developed an NAFLD rat model by high-fat diet feeding for 6 weeks. Normal and NAFLD groups were orally administered different rhubarb anthraquinones doses (37.5, 75, and 150 mg/kg). The concentration of the rhein, emodin, aloe-emodin, chrysophanol, and physcion in plasma was determined by high-performance liquid chromatography-ultraviolet. RESULTS The results revealed significant differences in pharmacokinetic behavior between normal and NAFLD rats. Compared with normal rats, NAFLD rats demonstrated significantly increased maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC0 → ∞) of rhubarb anthraquinones (P < 0.05), as well as significantly prolonged time to reach maximum plasma concentration (Tmax), terminal elimination half-life (t1/2), and mean residence time (MRT) of rhubarb anthraquinones (P < 0.05). CONCLUSIONS This study indicates significant differences in the pharmacokinetics of rhubarb anthraquinones between the physiological and NAFLD states of rats. Rhubarb anthraquinone demonstrated a longer retention time and slower absorption rate in NAFLD rats and exhibited higher bioavailability and peak concentration. This finding provides important information for guiding the clinical use of rhubarb anthraquinones under pathological conditions.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Xiaohong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
5
|
Zhang J, Ma S, Zhou W, Feng J, Kang Y, Yang W, Zhang H, Deng F. Genetic polymorphisms of CYP2B6 is a risk of metabolic associated fatty liver disease in Chinese population. Toxicol Appl Pharmacol 2023; 481:116770. [PMID: 37995809 DOI: 10.1016/j.taap.2023.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The expression and activity of cytochrome P450 2B6 (CYP2B6) may be related to the metabolic associated fat liver disease (MAFLD). Since constitutive androstane receptor (CAR) is a classic transcriptional regulator of CYP2B6, and the single nucleotide polymorphisms (SNPs) of CYP2B6 and CAR are both associated with adverse reactions of efavirenz, we hypothesized that genetic polymorphisms of CAR might also result in additional interindividual variability in CYP2B6. This study was devoted to explore the association between CYP2B6 and CAR SNPs and susceptibility to MAFLD. MATERIALS AND METHODS A total of 590 objects of study (118 with MAFLD and 472 healthy control) between December 2014 and April 2018 were retrospectively enrolled. Twenty-two selected SNPs in CYP2B6 and CAR were genotyped with a custom-designed 48-plex SNP Scan TM® Kit. The frequencies of the alleles, genotypes and genetic models of the variants were compared between the two groups. The odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated. RESULTS The T allele of rs3745274 in CYP2B6 was associated with a decreased risk for MAFLD (OR 0.610; 95% CI: 0.451-0.825, p = 0.001) which was still statistically significant after adjusting with Bonferroni method(p = 0.014) The allele, genotype and genetic model frequencies were similar in the two groups for the other twenty-one SNPs (all P > 0.05). There were no multiplicative or additive interactions between the SNPs. CONCLUSION Our study revealed that rs3745274 variants in CYP2B6 is associated with susceptibility to MAFLD in the Han Chinese population.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Laboratory Medicine and Department of Blood Transfusion, Chengdu Second People's Hospital, Chengdu, China
| | - Shijie Ma
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhou
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Feng
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Kang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Yang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Heping Zhang
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu, China; Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Solan ME, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on human cytochrome P450 (CYP450) enzymes and human hepatocytes: An in vitro study. Curr Res Toxicol 2023; 5:100116. [PMID: 37575337 PMCID: PMC10412865 DOI: 10.1016/j.crtox.2023.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) have been developed as alternatives to legacy long-chain PFAS, but they may still pose risks due to their potential to interact with biomolecules. Cytochrome P450 (CYP450) enzymes are essential for xenobiotic metabolism, and disruptions of these enzymes by PFAS can have significant human health implications. The inhibitory potential of two legacy long-chain (PFOA and PFOS) and five short-chain alternative PFAS (PFBS, PFHxA, HFPO-DA, PFHxS, and 6:2 FTOH) were assessed in recombinant CYP1A2, - 2B6, -2C19, -2E1, and -3A4 enzymes. Most of the short-chain PFAS, except for PFHxS, tested did not result in significant inhibition up to 100 μM. PFOS inhibited recombinant CYP1A2, -2B6, -2C19, and -3A4 enzymes. However, concentrations where inhibition occurred, were all higher than the averages reported in population biomonitoring studies, with IC50 values higher than 10 µM. We also evaluated the activities of CYP1A2 and CYP3A4 in HepaRG monolayers following 48 h exposures of the short-chain PFAS at two concentrations (1 nM or 1 µM) and with or without an inducer (benzo[a]pyrene, BaP, for CYP1A2 and rifampicin for CYP3A4). Our findings suggest that both 1 nM and 1 µM exposures to short-chain PFAS can modulate the CYP1A2 activity induced by BaP. Except for PFHxS, the short-chain PFAS appear to have little effect on CYP3A4 activity. Understanding the effects of PFAS exposure on biotransformation can shed light on the mechanisms of PFAS toxicity and aid in developing effective strategies for managing chemical risks, enabling regulators to make more informed decisions.
Collapse
Affiliation(s)
- Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| |
Collapse
|
8
|
Chen H, Zhou S, Chen W, Zhu M, Yu H, Zheng L, Wang B, Wang M, Feng W. PEG-GNPs aggravate MCD-induced steatohepatitic injury and liver fibrosis in mice through excessive lipid accumulation-mediated hepatic inflammatory damage. NANOIMPACT 2023; 31:100469. [PMID: 37270064 DOI: 10.1016/j.impact.2023.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Rapid development of gold nanoparticles (GNPs) in delivering pharmaceutics and therapeutics approaches still linger the concerns of their toxic effects. Nonalcoholic steatohepatitis (NASH) is characterized by excessive lipid accumulation and overt hepatic inflammatory damage, and is the leading cause of chronic liver disease worldwide. This study aimed to assess the potential hepatic effects of GNPs on NASH phenotype and progression in mice. Mice were fed a MCD diet for 8 weeks to elicit NASH and then intravenously injected with PEG-GNPs at a single dose of 1, 5, and 25 mg/kg-bw. After 24 h and 1 week of administration, the levels of plasma ALT and AST, and the number of lipid droplets, the degree of lobular inflammation and the contents of triglycerides and cholesterols in the livers of the NASH mice significantly increased compared with the untreated NASH mice, indicating that the severity of MCD diet-induced NASH-like symptoms in mice increased after PEG-GNP administration. Moreover, the aggravated hepatic steatosis in a manner involving altered expression of the genes related to hepatic de novo lipogenesis, lipolysis, and fatty acid oxidation was observed after PEG-GNP administration. Additionally, the RNA levels of biomarkers of hepatic pro-inflammatory responses, endoplasmic reticulum stress, apoptosis, and autophagy in MCD-fed mice increased compared with the untreated NASH group. Moreover, PEG-GNP-treated NASH mice displayed an increase in MCD diet-induced hepatic fibrosis, revealed by massive deposition of collagen fiber in the liver and increased expression of fibrogenic genes. Collectively, these results suggest that hepatic GNP deposition after PEG-GNP administration increase the severity of MCD-induced NASH phenotype in mice, which is attributable to, in large part, increased steatohepatitic injury and liver fibrosis in mice.
Collapse
Affiliation(s)
- Hanqing Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Shuang Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Meilin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hongyang Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
9
|
Zhang J, Jia Q, Li Y, He J. The Function of Xenobiotic Receptors in Metabolic Diseases. Drug Metab Dispos 2023; 51:237-248. [PMID: 36414407 DOI: 10.1124/dmd.122.000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Albadry M, Höpfl S, Ehteshamzad N, König M, Böttcher M, Neumann J, Lupp A, Dirsch O, Radde N, Christ B, Christ M, Schwen LO, Laue H, Klopfleisch R, Dahmen U. Periportal steatosis in mice affects distinct parameters of pericentral drug metabolism. Sci Rep 2022; 12:21825. [PMID: 36528753 PMCID: PMC9759570 DOI: 10.1038/s41598-022-26483-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Little is known about the impact of morphological disorders in distinct zones on metabolic zonation. It was described recently that periportal fibrosis did affect the expression of CYP proteins, a set of pericentrally located drug-metabolizing enzymes. Here, we investigated whether periportal steatosis might have a similar effect. Periportal steatosis was induced in C57BL6/J mice by feeding a high-fat diet with low methionine/choline content for either two or four weeks. Steatosis severity was quantified using image analysis. Triglycerides and CYP activity were quantified in photometric or fluorometric assay. The distribution of CYP3A4, CYP1A2, CYP2D6, and CYP2E1 was visualized by immunohistochemistry. Pharmacokinetic parameters of test drugs were determined after injecting a drug cocktail (caffeine, codeine, and midazolam). The dietary model resulted in moderate to severe mixed steatosis confined to periportal and midzonal areas. Periportal steatosis did not affect the zonal distribution of CYP expression but the activity of selected CYPs was associated with steatosis severity. Caffeine elimination was accelerated by microvesicular steatosis, whereas midazolam elimination was delayed in macrovesicular steatosis. In summary, periportal steatosis affected parameters of pericentrally located drug metabolism. This observation calls for further investigations of the highly complex interrelationship between steatosis and drug metabolism and underlying signaling mechanisms.
Collapse
Affiliation(s)
- Mohamed Albadry
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany ,grid.411775.10000 0004 0621 4712Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Sebastian Höpfl
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Nadia Ehteshamzad
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Matthias König
- grid.7468.d0000 0001 2248 7639Institute for Theoretical Biology, Institute of Biology, Humboldt-University, Berlin, Germany
| | - Michael Böttcher
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Jasna Neumann
- MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstraße 6, 06847 Dessau-Roßlau, Germany
| | - Amelie Lupp
- grid.275559.90000 0000 8517 6224Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Olaf Dirsch
- grid.459629.50000 0004 0389 4214Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Nicole Radde
- grid.5719.a0000 0004 1936 9713Institute for Systems Theory and Automatic Control, Faculty of Engineering Design, Production Engineering and Automotive Engineering, University of Stuttgart, Stuttgart, Germany
| | - Bruno Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Madlen Christ
- grid.9647.c0000 0004 7669 9786Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Lars Ole Schwen
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Hendrik Laue
- grid.428590.20000 0004 0496 8246Fraunhofer MEVIS, Max-Von-Laue-Str. 2, 28359 Bremen, Germany
| | - Robert Klopfleisch
- grid.14095.390000 0000 9116 4836Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Uta Dahmen
- grid.275559.90000 0000 8517 6224Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| |
Collapse
|
11
|
Tarantino G, Cataldi M, Citro V. Could Alcohol Abuse and Dependence on Junk Foods Inducing Obesity and/or Illicit Drug Use Represent Danger to Liver in Young People with Altered Psychological/Relational Spheres or Emotional Problems? Int J Mol Sci 2022; 23:ijms231810406. [PMID: 36142317 PMCID: PMC9499369 DOI: 10.3390/ijms231810406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recent data show that young people, mainly due to the pressure of some risk factors or due to disrupted interpersonal relationships, utilise greater reward value and display greater sensitivity to the reinforcing properties of “pleasurable stimuli”, specifically in those situations in which an enhanced dopamine release is present. Alcoholic beverages, foods rich in sugar and fat, and illicit drug use are pleasurable feelings associated with rewards. Research shows that there is a link between substance abuse and obesity in brain functioning. Still, alcohol excess is central in leading to obesity and obesity-related morbidities, such as hepatic steatosis, mainly when associated with illicit drug dependence and negative eating behaviours in young people. It is ascertained that long-term drinking causes mental damage, similarly to drug abuse, but also affects liver function. Indeed, beyond the pharmacokinetic interactions of alcohol with drugs, occurring in the liver due to the same metabolic enzymes, there are also pharmacodynamic interactions of both substances in the CNS. To complicate matters, an important noxious effect of junk foods consists of inducing obesity and obesity-related NAFLD. In this review, we focus on some key mechanisms underlying the impact of these addictions on the liver, as well as those on the CNS.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, 80131 Naples, Italy
- Correspondence:
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, “Federico II” University of Naples, 80138 Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy
| |
Collapse
|