1
|
Song Q, Fan Y, Zhang H, Wang N. Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death. Cytokine Growth Factor Rev 2024; 77:15-29. [PMID: 38548490 DOI: 10.1016/j.cytogfr.2024.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024]
Abstract
Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Yuhang Fan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
2
|
Sales Conniff A, Tur J, Kohena K, Zhang M, Gibbons J, Heller LC. DNA Electrotransfer Regulates Molecular Functions in Skeletal Muscle. Bioelectricity 2024; 6:80-90. [PMID: 39119567 PMCID: PMC11304878 DOI: 10.1089/bioe.2022.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background Tissues, such as skeletal muscle, have been targeted for the delivery of plasmid DNA (pDNA) encoding vaccines and therapeutics. The application of electric pulses (electroporation or electrotransfer) increases cell membrane permeability to enhance plasmid delivery and expression. However, the molecular effects of DNA electrotransfer on the muscle tissue are poorly characterized. Materials and Methods Four hours after intramuscular plasmid electrotransfer, we evaluated gene expression changes by RNA sequencing. Differentially expressed genes were analyzed by gene ontology (GO) pathway enrichment analysis. Results GO analysis highlighted many enriched molecular functions. The terms regulated by pulse application were related to muscle stress, the cytoskeleton and inflammation. The terms regulated by pDNA injection were related to a DNA-directed response and its control. Several terms regulated by pDNA electrotransfer were similar to those regulated by pulse application. However, the terms related to pDNA injection differed, focusing on entry of the plasmid into the cells and intracellular trafficking. Conclusion Each muscle stimulus resulted in specific regulated molecular functions. Identifying the unique intrinsic molecular changes driven by intramuscular DNA electrotransfer will aid in the design of preventative and therapeutic gene therapies.
Collapse
Affiliation(s)
- Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Jared Tur
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Kristopher Kohena
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- USF Genomics Core, University of South Florida, Tampa, Florida, USA
| | - Justin Gibbons
- USF Omics Hub, University of South Florida, Tampa, Florida, USA
| | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Shi G, Synowiec J, Singh J, Heller R. Modification of the tumor microenvironment enhances immunity with plasmid gene therapy. Cancer Gene Ther 2024; 31:641-648. [PMID: 38337037 DOI: 10.1038/s41417-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Local intratumor delivery with electroporation of low levels of plasmids encoding molecules, induces an antitumor effect without causing systemic toxicity. However, previous studies have predominately focused on the function of the delivered molecule encoded within the plasmid, and ignored the plasmid vector. In this study, we found vectors pUMVC3 and pVax1 induced upregulation of MHC class I (MHC-I) and PD-L1 on tumor cell surface. These molecules participate in a considerable number of immunoregulatory functions through their interactions with and activating inhibitory immune cell receptors. MHC molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells and tumor cells. Increased PD-L1 expression on tumor cells is an important monitor of tumor growth and the effectiveness of immune inhibitor therapy. Results from flow cytometry confirmed increased expression of MHC-I and PDL-1 on B16F10, 4T1, and KPC tumor cell lines. Preliminary animal data from tumor-bearing models, B16F10 melanoma, 4T1 breast cancer and KPC pancreatic cancer mouse models showed that tumor growth was attenuated after pUMVC3 intratumoral electroporation. Our data also documented that pSTAT1 signaling pathway might not be associated with plasmid vectors' function of upregulating MHC-I, PD-L1 on tumor cells.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Jody Synowiec
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Julie Singh
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Sales Conniff A, Singh J, Heller R, Heller LC. Pulsed Electric Fields Induce STING Palmitoylation and Polymerization Independently of Plasmid DNA Electrotransfer. Pharmaceutics 2024; 16:363. [PMID: 38543257 PMCID: PMC10975742 DOI: 10.3390/pharmaceutics16030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Gene therapy approaches may target skeletal muscle due to its high protein-expressing nature and vascularization. Intramuscular plasmid DNA (pDNA) delivery via pulsed electric fields (PEFs) can be termed electroporation or electrotransfer. Nonviral delivery of plasmids to cells and tissues activates DNA-sensing pathways. The central signaling complex in cytosolic DNA sensing is the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING). The effects of pDNA electrotransfer on the signaling of STING, a key adapter protein, remain incompletely characterized. STING undergoes several post-translational modifications which modulate its function, including palmitoylation. This study demonstrated that in mouse skeletal muscle, STING was constitutively palmitoylated at two sites, while an additional site was modified following electroporation independent of the presence of pDNA. This third palmitoylation site correlated with STING polymerization but not with STING activation. Expression of several palmitoyl acyltransferases, including zinc finger and DHHC motif containing 1 (zDHHC1), coincided with STING activation. Expression of several depalmitoylases, including palmitoyl protein thioesterase 2 (PPT2), was diminished in all PEF application groups. Therefore, STING may not be regulated by active modification by palmitate after electroporation but inversely by the downregulation of palmitate removal. These findings unveil intricate molecular changes induced by PEF application.
Collapse
Affiliation(s)
| | | | | | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA; (A.S.C.); (J.S.); (R.H.)
| |
Collapse
|
5
|
Komel T, Bosnjak M, Sersa G, Cemazar M. Expression of GFP and DsRed fluorescent proteins after gene electrotransfer of tumour cells in vitro. Bioelectrochemistry 2023; 153:108490. [PMID: 37356264 DOI: 10.1016/j.bioelechem.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Fluorescent reporter genes are widely used to study the transfection of various types of primary cells and cell lines. The aim of our research was to investigate the expression dynamics of GFP and DsRed reporter genes individually and combined after gene electrotransfer of plasmids with two different electroporation protocols in B16F10 and CT26 cells in vitro. The cytotoxicity after gene electrotransfer of both plasmids was first determined. Second, the intensity of fluorescence and the percentage of cells transfected with both plasmids individually and in combination were monitored in real time. The results show that the percentage of viability after gene electrotransfer of plasmids using the EP2 pulses was significantly higher compared to the EP1 pulses. In contrast, the percentage of transfected cells and fluorescence intensity were higher after gene electrotransfer with the EP1 pulse protocol. Moreover, the percentage of transfected cells was higher and started earlier in the B16F10 cell line than in the CT26 cell line. However, fluorescence intensity was higher in CT26 cells. Co-expression of fluorescent proteins was achieved only in a small number of cells. In conclusion, this study elucidated some of the dynamics of reporter gene expression in cancer cell lines after gene electrotransfer.
Collapse
Affiliation(s)
- Tilen Komel
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Masa Bosnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI - 6310 Izola, Slovenia.
| |
Collapse
|
6
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
7
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
8
|
Sales Conniff A, Tur J, Kohena K, Zhang M, Gibbons J, Heller LC. Transcriptomic Analysis of the Acute Skeletal Muscle Effects after Intramuscular DNA Electroporation Reveals Inflammatory Signaling. Vaccines (Basel) 2022; 10:vaccines10122037. [PMID: 36560447 PMCID: PMC9786673 DOI: 10.3390/vaccines10122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle is a promising tissue for therapeutic gene delivery because it is highly vascularized, accessible, and capable of synthesizing protein for therapies or vaccines. The application of electric pulses (electroporation) enhances plasmid DNA delivery and expression by increasing membrane permeability. Four hours after plasmid electroporation, we evaluated acute gene and protein expression changes in mouse skeletal muscle to identify regulated genes and genetic pathways. RNA sequencing followed by functional annotation was used to evaluate differentially expressed mRNAs. Our data highlighted immune signaling pathways that may influence the effectiveness of DNA electroporation. Cytokine and chemokine protein levels in muscle lysates revealed the upregulation of a subset of inflammatory proteins and confirmed the RNA sequencing analysis. Several regulated DNA-specific pattern recognition receptor mRNAs were also detected. Identifying unique molecular changes in the muscle will facilitate a better understanding of the underlying molecular mechanisms and the development of safety biomarkers and novel strategies to improve skeletal muscle targeted gene therapy.
Collapse
Affiliation(s)
- Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Jared Tur
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Kristopher Kohena
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Min Zhang
- USF Genomics Core, University of South Florida, Tampa, FL 33612, USA
| | - Justin Gibbons
- USF Omics Hub, University of South Florida, Tampa, FL 33612, USA
| | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4637
| |
Collapse
|
9
|
Bhandary M, Sales Conniff A, Miranda K, Heller LC. Acute Effects of Intratumor DNA Electrotransfer. Pharmaceutics 2022; 14:pharmaceutics14102097. [PMID: 36297532 PMCID: PMC9611921 DOI: 10.3390/pharmaceutics14102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
Intratumor therapeutic DNA electroporation or electrotransfer is in clinical trials in the United States and is under development in many other countries. Acute changes in endogenous gene expression in response to DNA or to pulse application may significantly modulate the therapeutic efficacy of the expressed proteins. Oligonucleotide arrays were used in this study to quantify changes in mRNA expression in B16-F10 mouse melanoma tumors four hours after DNA electrotransfer. The data were subjected to the DAVID v6.8 web server for functional annotation to reveal regulated genes and genetic pathways. Gene ontology analysis revealed several molecular functions related to cytoskeletal remodeling and inflammatory signaling. In B16-F10 cells, F-actin remodeling was confirmed by phalloidin staining in cells that received pulse application alone or in the presence of DNA. Chemokine secretion was confirmed in cells receiving DNA electrotransfer. These results indicate that pulse application alone or in the presence of DNA may modulate the therapeutic efficacy of therapeutic DNA electrotransfer.
Collapse
|