1
|
Feng XL, Xie TC, Wang ZX, Lin C, Li ZC, Huo J, Li Y, Liu C, Gao JM, Qi J. Distinguishing Sanghuangporus from sanghuang-related fungi: a comparative and phylogenetic analysis based on mitogenomes. Appl Microbiol Biotechnol 2024; 108:423. [PMID: 39037499 PMCID: PMC11263249 DOI: 10.1007/s00253-024-13207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.
Collapse
Affiliation(s)
- Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Tian-Chen Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhao-Chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jinxi Huo
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| |
Collapse
|
2
|
Chen J, Zhao Y, Cheng J, Wang H, Pan S, Liu Y. The Antiviral Potential of Perilla frutescens: Advances and Perspectives. Molecules 2024; 29:3328. [PMID: 39064906 PMCID: PMC11279397 DOI: 10.3390/molecules29143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses pose a significant threat to human health, causing widespread diseases and impacting the global economy. Perilla frutescens, a traditional medicine and food homologous plant, is well known for its antiviral properties. This systematic review examines the antiviral potential of Perilla frutescens, including its antiviral activity, chemical structure and pharmacological parameters. Utilizing bioinformatics analysis, we revealed the correlation between Perilla frutescens and antiviral activity, identified overlaps between Perilla frutescens target genes and virus-related genes, and explored related signaling pathways. Moreover, a classified summary of the active components of Perilla frutescens, focusing on compounds associated with antiviral activity, provides important clues for optimizing the antiviral drug development of Perilla frutescens. Our findings indicate that Perilla frutescens showed a strong antiviral effect, and its active ingredients can effectively inhibit the replication and spread of a variety of viruses in this review. The antiviral mechanisms of Perilla frutescens may involve several pathways, including enhanced immune function, modulation of inflammatory responses, and inhibition of key enzyme activities such as viral replicase. These results underscore the potential antiviral application of Perilla frutescens as a natural plant and provide important implications for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing Chen
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Yi Zhao
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Jie Cheng
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Haoran Wang
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Shu Pan
- Computer Science School, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
| | - Yuwei Liu
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| |
Collapse
|
3
|
Jiang WP, Deng JS, Yu CC, Lin JG, Huang GJ. Anti-SARS-CoV-2 Viral Activity of Sweet Potato Trypsin Inhibitor via Downregulation of TMPRSS2 Activity and ACE2 Expression In Vitro and In Vivo. Int J Mol Sci 2024; 25:6067. [PMID: 38892254 PMCID: PMC11172529 DOI: 10.3390/ijms25116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Known as COVID-19, it has affected billions of people worldwide, claiming millions of lives and posing a continuing threat to humanity. This is considered one of the most extensive pandemics ever recorded in human history, causing significant losses to both life and economies globally. However, the available evidence is currently insufficient to establish the effectiveness and safety of antiviral drugs or vaccines. The entry of the virus into host cells involves binding to angiotensin-converting enzyme 2 (ACE2), a cell surface receptor, via its spike protein. Meanwhile, transmembrane protease serine 2 (TMPRSS2), a host surface protease, cleaves and activates the virus's S protein, thus promoting viral infection. Plant protease inhibitors play a crucial role in protecting plants against insects and/or microorganisms. The major storage proteins in sweet potato roots include sweet potato trypsin inhibitor (SWTI), which accounts for approximately 60% of the total water-soluble protein and has been found to possess a variety of health-promoting properties, including antioxidant, anti-inflammatory, ACE-inhibitory, and anticancer functions. Our study found that SWTI caused a significant reduction in the expression of the ACE2 and TMPRSS2 proteins, without any adverse effects on cells. Therefore, our findings suggest that the ACE2 and TMPRSS2 axis can be targeted via SWTI to potentially inhibit SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Chia-Chen Yu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| |
Collapse
|
4
|
Fan SH, Wang WQ, Zhou YW, Gao XJ, Zhang Q, Zhang MH. Research on the Interaction Mechanism and Structural Changes in Human Serum Albumin with Hispidin Using Spectroscopy and Molecular Docking. Molecules 2024; 29:655. [PMID: 38338399 PMCID: PMC10856618 DOI: 10.3390/molecules29030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The interaction between human serum albumin (HSA) and hispidin, a polyketide abundantly present in both edible and therapeutic mushrooms, was explored through multispectral methods, hydrophobic probe assays, location competition trials, and molecular docking simulations. The results of fluorescence quenching analysis showed that hispidin quenched the fluorescence of HSA by binding to it via a static mechanism. The binding of hispidin and HSA was validated further by synchronous fluorescence, three-dimensional fluorescence, and UV/vis spectroscopy analysis. The apparent binding constant (Ka) at different temperatures, the binding site number (n), the quenching constants (Ksv), the dimolecular quenching rate constants (Kq), and the thermodynamic parameters (∆G, ∆H, and ∆S) were calculated. Among these parameters, ∆H and ∆S were determined to be 98.75 kJ/mol and 426.29 J/(mol·K), respectively, both exhibiting positive values. This observation suggested a predominant contribution of hydrophobic forces in the interaction between hispidin and HSA. By employing detergents (SDS and urea) and hydrophobic probes (ANS), it became feasible to quantify alterations in Ka and surface hydrophobicity, respectively. These measurements confirmed the pivotal role of hydrophobic forces in steering the interaction between hispidin and HSA. Site competition experiments showed that there was an interaction between hispidin and HSA molecules at site I, which situates the IIA domains of HSA, which was further confirmed by the molecular docking simulation.
Collapse
Affiliation(s)
- Si-Hua Fan
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Wen-Qiang Wang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Yu-Wen Zhou
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Xue-Jun Gao
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Qiang Zhang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
| | - Ming-Hui Zhang
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| |
Collapse
|
5
|
Li TJ, Lin TW, Lu TY, Tseng CK, Lin CK, Chu HT, Li IC, Chen CC. Phellinus linteus mycelia extract in COVID-19 prevention and identification of its key metabolic compounds profiling using UPLC-QTOF-MS/MS spectrometry. Fitoterapia 2023; 171:105695. [PMID: 37797793 DOI: 10.1016/j.fitote.2023.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
For centuries, food, herbal medicines, and natural products have been valuable resources for discovering novel antiviral drugs, uncovering new structure-activity relationships, and developing effective strategies to prevent/treat viral infections. One such resource is Phellinus linteus, a mushroom used in folk medicine in Taiwan, Japan, Korea, and China. In this rich historical context, the key metabolites of Phellinus linteus mycelia ethanolic extract (GKPL) impacting the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at multiple stages have yet to be explored. Thus, this study systematically identifies and assesses the inhibitory effect of GKPL on the SARS-CoV-2 virus. Initially, the concentrations and contact times of GKPL against SARS-CoV-2 pseudovirus were assessed in HepG2 cells. Subsequently, utilizing the Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry method, potential biomarkers in the fungal extract were discerned. Metabolomic analysis identified 18 compounds in GKPL, with hispidin and hypholomine B present in the highest amounts. These compounds were isolated using chromatographic techniques and further identified through 1D NMR spectroscopic and mass spectrometry analysis. Hispidin and hypholomine B were found to inhibit the infection of SARS-CoV-2 pseudovirus by reducing angiotensin-converting enzyme 2 gene expression in HepG2, thereby decreasing viral entry. Moreover, hispidin and hypholomine B effectively block the spike receptor-binding domain, while hypholomine B, for the first time, showed significant inhibition of 3CL protease. This suggests that GKPL, enriched with hispidin and hypholomine B, has the potential to be used as an active ingredient against SARS-CoV-2.
Collapse
Affiliation(s)
- Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | - Ting-Yu Lu
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | | | | | - Hsin-Tung Chu
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan.
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan.
| |
Collapse
|
6
|
Zhou Z, Liang S, Zou X, Teng Y, Wang W, Fu L. Determination of Phenolic Acids Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole (UHPLC-QqQ) in Fruiting Bodies of Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai. PLANTS (BASEL, SWITZERLAND) 2023; 12:3565. [PMID: 37896027 PMCID: PMC10609702 DOI: 10.3390/plants12203565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Sanghuangporus, a medicinal mushroom, has gained significant attention due to its beneficial properties. Phenolic acids are among the major bioactive compounds in Sanghuangporus, known for their antioxidant and anti-inflammatory activities. To precisely quantify the phenolic acid content, we developed a method utilizing ultra-high-performance liquid chromatography with triple quadrupole (UHPLC-QqQ). This study optimized the UHPLC-QqQ conditions to simultaneously separate and detect eight phenolic acids in Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai, including chlorogenic acid, p-coumaric acid, caffeic acid, cryptochlorogenic acid, protocatechuic acid, ferulic acid, sinapic acid, and syringic acid. The separation process utilized a ZORBAX Eclipse Plus C18 column using 0.01% formic acid and 2 mmol/L ammonium formate in water as the aqueous phase and methanol containing 0.01% formic acid and 2 mmol/L ammonium formate as the organic phase. Calibration curves were constructed using standard solutions to quantitatively determine the phenolic acid content. The results showed significant variation in phenolic acid content among S. baumii fruiting bodies, with Protocatechuic acid, p-coumaric acid, and caffeic acid being the most abundant. This method is valuable for quantifying phenolic acid compounds under different cultivation conditions. It provides excellent sensitivity, selectivity, and reproducibility for the quantification of phenolic acids in Sanghuangporus, contributing to a better understanding of its chemical composition and potential health benefits. This approach represents a novel technical means for the simultaneous analysis of compound phenolic acids in Sanghuangporus fruiting bodies.
Collapse
Affiliation(s)
- Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Xiaowei Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | - Yi Teng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Lizhong Fu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| |
Collapse
|
7
|
Chen YR, Jiang WP, Deng JS, Chou YN, Wu YB, Liang HJ, Lin JG, Huang GJ. Anisomeles indica Extracts and Their Constituents Suppress the Protein Expression of ACE2 and TMPRSS2 In Vivo and In Vitro. Int J Mol Sci 2023; 24:15062. [PMID: 37894745 PMCID: PMC10606724 DOI: 10.3390/ijms242015062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), stemming from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a profound global impact. This highly contagious pneumonia remains a significant ongoing threat. Uncertainties persist about the virus's effects on human health, underscoring the need for treatments and prevention. Current research highlights angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) as key targets against SARS-CoV-2. The virus relies on ACE2 to enter cells and TMPRSS2 to activate its spike protein. Inhibiting ACE2 and TMPRSS2 expression can help prevent and treat SARS-CoV-2 infections. Anisomeles indica (L.) Kuntze, a medicinal plant in traditional Chinese medicine, shows various promising pharmacological properties. In this study, ethanolic extracts of A. indica were examined both in vivo (250 and 500 μM) and in vitro (500 μM). Through Western blotting analysis, a significant reduction in the expression levels of ACE2 and TMPRSS2 proteins was observed in HepG2 (human hepatocellular carcinoma) cells and HEK 293T (human embryonic kidney) cell lines without inducing cellular damage. The principal constituents of A. indica, namely, ovatodiolide (5 and 10 μM), anisomlic acid (5 and 10 μM), and apigenin (12.5 and 25 μM), were also found to produce the same effect. Furthermore, immunohistochemical analysis of mouse liver, kidney, and lung tissues demonstrated a decrease in ACE2 and TMPRSS2 protein expression levels. Consequently, this article suggests that A. indica and its constituents have the potential to reduce ACE2 and TMPRSS2 protein expression levels, thus aiding in the prevention of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Yeh-Bin Wu
- Arjil Pharmaceuticals LLC, Hsinchu 300, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Hui-Ju Liang
- Arjil Pharmaceuticals LLC, Hsinchu 300, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Jaung-Geng Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| |
Collapse
|
8
|
Chien LH, Deng JS, Jiang WP, Chou YN, Lin JG, Huang GJ. Evaluation of lung protection of Sanghuangporus sanghuang through TLR4/NF-κB/MAPK, keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 signaling pathways mediating apoptosis and autophagy. Biomed Pharmacother 2023; 165:115080. [PMID: 37392658 DOI: 10.1016/j.biopha.2023.115080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial pneumonia characterized by chronic and progressive fibrosis with an unknown etiology. Previous pharmacological studies have shown that Sanghuangporus sanghuang possesses various beneficial properties including immunomodulatory, hepatoprotective, antitumor, antidiabetic, anti-inflammatory, and neuroprotective effects. This study used a bleomycin (BLM)-induced IPF mouse model to illustrate the possible benefits of SS in ameliorating IPF. BLM was administered on day 1 to establish a pulmonary fibrosis mouse model, and SS was administered through oral gavage for 21 d. Hematoxylin and eosin (H&E) and Masson's trichrome staining results showed that SS significantly reduced tissue damage and decreased fibrosis expression. We observed that SS treatment resulted in a substantial lowering in the level of pro-inflammatory cytokines like TGF-β, TNF-α, IL-1β, and IL-6 as well as MPO. In addition, we observed a notable increase in glutathione (GSH) levels. Western blot analysis of SS showed that it reduces inflammatory factors (TWEAK, iNOS, and COX-2), MAPK (JNK, p-ERK, and p-38), fibrosis-related molecules (TGF-β, SMAD3, fibronectin, collagen, α-SMA, MMP2, and MMP9), apoptosis (p53, p21, and Bax), and autophagy (Beclin-1, LC3A/B-I/II, and p62), and notably increases caspase 3, Bcl-2, and antioxidant (Catalase, GPx3, and SOD-1) levels. SS alleviates IPF by regulating the TLR4/NF-κB/MAPK, Keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 pathways. These results suggest that SS has a pharmacological activity that protects the lungs and has the potential to improve pulmonary fibrosis.
Collapse
Affiliation(s)
- Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jaung-Geng Lin
- Department of Chinese Medical, China Medical University, Taichung 404, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
9
|
Gao H, Yin C, Li C, Li Y, Shi D, Fan X, Yao F, Wu W, Li J. Phenolic profile, antioxidation and anti-proliferation activity of phenolic-rich extracts from Sanghuangporusvaninii. Curr Res Food Sci 2023; 6:100519. [PMID: 37266413 PMCID: PMC10230169 DOI: 10.1016/j.crfs.2023.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
In this study, phenolic-rich extracts from Sanghuangporus vaninii (SHE) were prepared, the phenolic profile and main phenolic compound content of SHE were studied by UPLC-Orbitrap-MS, and the antioxidant and antiproliferation activities of SHE were evaluated. The results showed that the total polyphenol content and the total flavonoid content of SHE were 42.420 ± 0.011 mg GAE/g EW and 8.504 ± 0.205 mg RE/g EW, respectively. Moreover, 14 phenolic acids and 8 flavonoids in SHE were identified, among which, the major polyphenols were protocatechualdehyde (394.68 μg/g), protocatechuic acid (196.88 μg/g), caffeic acid (96.11 μg/g), L-phenylalanine (12.72 μg/g) and (+)-taxifolin (8.59 μg/g). SHE showed strong radical scavenging, anti-lipid peroxidation and anti-DNA damage capacity in vitro. SHE could effectively induce HepG2 cell apoptosis via the caspases-dependent mitochondrial apoptotic pathway and arrest the cell cycle in the G0/G1 phase. The present study suggested that S. vaninii could be a valuable source of natural antioxidative and antiproliferative ingredients.
Collapse
Affiliation(s)
- Hong Gao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Research Center of Under-forest Economy in Hubei Province, Wuhan, 430064, China
| | - Chaomin Yin
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Chen Li
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yuhong Li
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Defang Shi
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiuzhi Fan
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Fen Yao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenjing Wu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics of Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jiangtao Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
10
|
Wang H, Ma JX, Wu DM, Gao N, Si J, Cui BK. Identifying Bioactive Ingredients and Antioxidant Activities of Wild Sanghuangporus Species of Medicinal Fungi. J Fungi (Basel) 2023; 9:jof9020242. [PMID: 36836356 PMCID: PMC9959451 DOI: 10.3390/jof9020242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Sanghuangporus refers to a group of rare medicinal fungi with remarkable therapeutic properties. However, current knowledge on the bioactive ingredients and antioxidant activities of different species of this genus is limited. In this study, a total of 15 wild strains from 8 species of Sanghuangporus were selected as the experimental materials for identification of the bioactive components (polysaccharide, polyphenol, flavonoid, triterpenoid, and ascorbic acid) and antioxidant activities (scavenging activities against hydroxyl, superoxide, DPPH, and ABTS radicals; superoxide dismutase activity; and ferric reducing ability of plasma). Notably, individual strains contained different levels of various indicators, among which Sanghuangporus baumii Cui 3573, S. sanghuang Cui 14419 and Cui 14441, S. vaninii Dai 9061, and S. zonatus Dai 10841 displayed the strongest activities. The correlation analysis of bioactive ingredients and antioxidant activities revealed that the antioxidant capacity of Sanghuangporus is mainly associated with the contents of flavonoid and ascorbic acid, followed by polyphenol and triterpenoid, and finally, polysaccharide. Together, the results obtained from the comprehensive and systematic comparative analyses contribute further potential resources and critical guidance for the separation, purification, and further development and utilization of bioactive agents from wild Sanghuangporus species, as well as the optimization of their artificial cultivation conditions.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dong-Mei Wu
- Xinjiang Academy of Agricultural and Reclamation Sciences/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Shihezi 832000, China
| | - Neng Gao
- Xinjiang Academy of Agricultural and Reclamation Sciences/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Shihezi 832000, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.S.); (B.-K.C.)
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.S.); (B.-K.C.)
| |
Collapse
|
11
|
Zhao J, Zhu J, Huang C, Zhu X, Zhu Z, Wu Q, Yuan R. Uncovering the information immunology journals transmitted for COVID-19: A bibliometric and visualization analysis. Front Immunol 2022; 13:1035151. [PMID: 36405695 PMCID: PMC9670819 DOI: 10.3389/fimmu.2022.1035151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Since the global epidemic of the coronavirus disease 2019 (COVID-19), a large number of immunological studies related to COVID-19 have been published in various immunology journals. However, the results from these studies were discrete, and no study summarized the important immunological information about COVID-19 released by these immunology journals. This study aimed to comprehensively summarize the knowledge structure and research hotspots of COVID-19 published in major immunology journals through bibliometrics. METHODS Publications on COVID-19 in major immunology journals were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, and R-bibliometrix were comprehensively used for bibliometric and visual analysis. RESULTS 1,331 and 5,000 publications of 10 journals with high impact factors and 10 journals with the most papers were included, respectively. The USA, China, England, and Italy made the most significant contributions to these papers. University College London, National Institute of Allergy and Infectious Diseases, Harvard Medical School, University California San Diego, and University of Pennsylvania played a central role in international cooperation in the immunology research field of COVID-19. Yuen Kwok Yung was the most important author in terms of the number of publications and citations, and the H-index. CLINICAL INFECTIOUS DISEASES and FRONTIERS IN IMMUNOLOGY were the most essential immunology journals. These immunology journals mostly focused on the following topics: "Delta/Omicron variants", "cytokine storm", "neutralization/neutralizing antibody", "T cell", "BNT162b2", "mRNA vaccine", "vaccine effectiveness/safety", and "long COVID". CONCLUSION This study systematically uncovered a holistic picture of the current research on COVID-19 published in major immunology journals from the perspective of bibliometrics, which will provide a reference for future research in this field.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinrong Wu
- Department of General Surgery, Yingtan City People’s Hospital, Yingtan, Jiangxi, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|