1
|
Roukas D, Tsiambas E, Spyropoulou D, Adamopoulou M, Tsouvelas G, Mastronikoli S, Monastirioti AE, Kouzoupis A, Lazaris A, Kavantzas N. Caspase 3 Expression Profiles in Meningioma Subtypes Based on Tissue Microarray Analysis. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:586-591. [PMID: 39238614 PMCID: PMC11372700 DOI: 10.21873/cdp.10367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024]
Abstract
Background/Aim Concerning primary central nervous system neoplasms, meningiomas demonstrate the most common type in adults worldwide. Deregulation of apoptotic pathways in malignancies, including meningiomas, is correlated with chemoresistance and poor prognosis. Caspases represent crucial proteins that induce cell apoptosis. This study aimed to correlate caspase 3 protein expression levels to meningioma clinic-pathological features. Materials and Methods A set of fifty (n=50) meningioma lesions was included in the current analysis including a broad spectrum of histopathological subtypes (meningotheliomatous, psammomatus, transitional, fibrous, angiomatous, microcystic, atypical and anaplastic). Immunohistochemistry was implemented on tissue microarray cores of selected paraffin blocks by applying an anti-caspase 3 antibody. Additionally, an image analysis protocol was also performed in the corresponding immunostained slides. Results Caspase 3 protein over-expression was detected in 17/50 (34%) cases, whereas the remaining 33 cases (66%) were characterized by medium to low levels of the molecule. Caspase 3 expression was statistically significantly associated with the grade of the analyzed tumors and the mitotic index (p=0.002, p=0.001, respectively). Caspase 3 expression status was also correlated with the histotype of the selected meningiomas (p=0.016). Conclusion Caspase 3 demonstrated low expression levels in a significant subset of the examined meningiomas correlated with differentiation grade, mitotic activity, and partially with specific histotypes. Agents that could enhance caspase 3 expression - inducing its apoptotic activity - represent a very promising area in oncology for developing novel treatment regimens.
Collapse
Affiliation(s)
- Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army (NIMTS) Hospital, Athens, Greece
| | - Evangelos Tsiambas
- Department of Cytology, 417 Veterans Army (NIMTS) Hospital, Athens, Greece
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - Maria Adamopoulou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - George Tsouvelas
- Department of Nursing, University of West Attica, Athens, Greece
| | | | | | | | - Andreas Lazaris
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Nikolaos Kavantzas
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
2
|
Qi X. Advances in antitumour therapy with oncolytic herpes simplex virus combinations. Discov Oncol 2024; 15:302. [PMID: 39046631 PMCID: PMC11269532 DOI: 10.1007/s12672-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Oncolytic Virus (OVs) is an emerging approach to tumour immunity that allows the use of natural or genetically modified viruses to specifically infect and lyse tumour cells without damaging normal cells. Oncolytic herpes simplex virus (oHSV) is one of the more widely researched and applied OVs in the field of oncology, which can directly kill tumour cells to promote anti-tumour immune responses. oHSV is one of the few viruses with good antiviral drugs, so oHSV is also more clinically safe. In recent years, in addition to monotherapy of oHSV in tumours, more and more studies have been devoted to exploring the anti-tumour effects of oHSV in combination with other therapeutic approaches. In this article we describe the progress of oHSV combination therapy against tumours in the nervous system, digestive system, reproductive system and other systems.
Collapse
Affiliation(s)
- Xuejiao Qi
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
3
|
Gagliano T, Kerschbamer E, Baccarani U, Minisini M, Di Giorgio E, Dalla E, Weichenberger CX, Cherchi V, Terrosu G, Brancolini C. Changes in chromatin accessibility and transcriptional landscape induced by HDAC inhibitors in TP53 mutated patient-derived colon cancer organoids. Biomed Pharmacother 2024; 173:116374. [PMID: 38447451 DOI: 10.1016/j.biopha.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.
Collapse
Affiliation(s)
- Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emanuela Kerschbamer
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Umberto Baccarani
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | | | - Vittorio Cherchi
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine, Italy
| | - Giovanni Terrosu
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy.
| |
Collapse
|
4
|
Nakatake M, Kurosaki H, Nakamura T. Histone deacetylase inhibitor boosts anticancer potential of fusogenic oncolytic vaccinia virus by enhancing cell-cell fusion. Cancer Sci 2024; 115:600-610. [PMID: 38037288 PMCID: PMC10859623 DOI: 10.1111/cas.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Oncolytic viruses have two anticancer functions: direct oncolysis and elicitation of antitumor immunity. We previously developed a novel fusogenic oncolytic vaccinia virus (FUVAC) from a non-fusogenic vaccinia virus (VV) and, by remodeling the tumor immune microenvironment, we demonstrated that FUVAC induced stronger oncolysis and antitumor immune responses compared with non-fusogenic VV. These functions depend strongly on cell-cell fusion induction. However, FUVAC tends to have decreased fusion activity in cells with low virus replication efficacy. Therefore, another combination strategy was required to increase cell-cell fusion in these cells. Histone deacetylase (HDAC) inhibitors suppress the host virus defense response and promote viral replication. Therefore, in this study, we selected an HDAC inhibitor, trichostatin A (TSA), as the combination agent for FUVAC to enhance its fusion-based antitumor potential. TSA was added prior to FUVAC treatment of murine tumor B16-F10 and CT26 cells. TSA increased the replication of both FUVAC and parental non-fusogenic VV. Moreover, TSA enhanced cell-cell fusion and FUVAC cytotoxicity in these tumor cells in a dose-dependent manner. Transcriptome analysis revealed that TSA-treated tumors showed altered expression of cellular component-related genes, which may affect fusion tolerance. In a bilateral tumor-bearing mouse model, combination treatment of TSA and FUVAC significantly prolonged mouse survival compared with either treatment alone or in combination with non-fusogenic VV. Our findings demonstrate that TSA is a potent enhancer of cell-cell fusion efficacy of FUVAC.
Collapse
Affiliation(s)
- Motomu Nakatake
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Hajime Kurosaki
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Takafumi Nakamura
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| |
Collapse
|
5
|
Karandikar PV, Suh L, Gerstl JVE, Blitz SE, Qu QR, Won SY, Gessler FA, Arnaout O, Smith TR, Peruzzi PP, Yang W, Friedman GK, Bernstock JD. Positioning SUMO as an immunological facilitator of oncolytic viruses for high-grade glioma. Front Cell Dev Biol 2023; 11:1271575. [PMID: 37860820 PMCID: PMC10582965 DOI: 10.3389/fcell.2023.1271575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.
Collapse
Affiliation(s)
- Paramesh V. Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lyle Suh
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Qing Rui Qu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sae-Yeon Won
- Department of Neurosurgery, University of Rostock, Rostock, Germany
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Yang
- Department of Anesthesiology, Multidisciplinary Brain Protection Program, Duke University Medical Center, Durham, NC, United States
| | - Gregory K. Friedman
- Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Monaco ML, Idris OA, Essani K. Triple-Negative Breast Cancer: Basic Biology and Immuno-Oncolytic Viruses. Cancers (Basel) 2023; 15:cancers15082393. [PMID: 37190321 DOI: 10.3390/cancers15082393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. TNBC diagnoses account for approximately one-fifth of all breast cancer cases globally. The lack of receptors for estrogen, progesterone, and human epidermal growth factor 2 (HER-2, CD340) results in a lack of available molecular-based therapeutics. This increases the difficulty of treatment and leaves more traditional as well as toxic therapies as the only available standards of care in many cases. Recurrence is an additional serious problem, contributing substantially to its higher mortality rate as compared to other breast cancers. Tumor heterogeneity also poses a large obstacle to treatment approaches. No driver of tumor development has been identified for TNBC, and large variations in mutational burden between tumors have been described previously. Here, we describe the biology of six different subtypes of TNBC, based on differential gene expression. Subtype differences can have a large impact on metastatic potential and resistance to treatment. Emerging antibody-based therapeutics, such as immune checkpoint inhibitors, have available targets for small subsets of TNBC patients, leading to partial responses and relatively low overall efficacy. Immuno-oncolytic viruses (OVs) have recently become significant in the pursuit of effective treatments for TNBC. OVs generally share the ability to ignore the heterogeneous nature of TNBC cells and allow infection throughout a treated tumor. Recent genetic engineering has allowed for the enhancement of efficacy against certain tumor types while avoiding the most common side effects in non-cancerous tissues. In this review, TNBC is described in order to address the challenges it presents to potential treatments. The OVs currently described preclinically and in various stages of clinical trials are also summarized, as are their strategies to enhance therapeutic potential.
Collapse
Affiliation(s)
- Michael L Monaco
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Omer A Idris
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|