1
|
Neagu AN, Jayaweera T, Corrice L, Johnson K, Darie CC. Breast Cancer Exposomics. Life (Basel) 2024; 14:402. [PMID: 38541726 PMCID: PMC10971462 DOI: 10.3390/life14030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 12/15/2024] Open
Abstract
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Lilian Corrice
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Kaya Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| |
Collapse
|
2
|
Satir S, Kaya DI, Ozsoy SC. Effect of tobacco use on cadmium accumulation in the oral keratinized mucosa. BMC Oral Health 2024; 24:257. [PMID: 38378541 PMCID: PMC10877838 DOI: 10.1186/s12903-024-04001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND This cross-sectional study aimed to evaluate the effect of tobacco use on the accumulation of cadmium (Cd), a carcinogenic element, in the oral keratinized mucosa (OKM). METHODS OKM samples were obtained by standard punch biopsy from nonsmokers (n = 19) and smokers (n = 21). Cd analysis was performed using inductively coupled plasma optical emission spectroscopy (ICP-OES). The calibration curve R2 values for three wavelengths (214,439, 226,502, and 228,802 nm) were at the level of 0.9999. The frequency of consumption of foods that are Cd sources, such as seafood, rice, and vegetables, was assessed in all patients. The age, sex, and nutritional habits of all patients and the frequency of tobacco consumption by smokers were recorded. The independent t-test, Mann-Whitney U test, Fisher's exact test, and Spearman correlation test were used for the statistical analyses, and p < 0.05 was considered significant. RESULTS Although the Cd levels in nonsmokers were higher than those in smokers, no statistically significant difference was found (p > 0.05). In smokers, a positive correlation was found between age and Cd level (r = 0.574, p = 0.006). No significant relationship was found between the groups in terms of nutrition or between the frequency of tobacco consumption and Cd accumulation. CONCLUSION The OKM may not have the characteristic cumulative accumulation in terms of toxic elements. Changes in the turnover rate, keratinization, and apoptotic mechanisms in the OKM with the thermal/chemical effects of tobacco may be responsible for the difference in Cd accumulation. TRIAL REGISTRATION NUMBER TCTR20230206001/06 Feb 2023 (TCTR: Thai Clinical Trials Registry).
Collapse
Affiliation(s)
- Samed Satir
- Faculty of Dentistry, Oral and Maxillofacial Radiology, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey.
| | - Dogan Ilgaz Kaya
- Faculty of Dentistry, Oral and Maxillofacial Surgery, Karamanoglu Mehmetbey University, Karaman, Turkey, 70200
| | - Sumeyye Celik Ozsoy
- Faculty of Dentistry, Oral and Maxillofacial Radiology, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey
| |
Collapse
|
3
|
Zimta AA, Cenariu D, Tigu AB, Moldovan C, Jurj A, Pirlog R, Pop C, Gurzau ES, Fischer-Fodor E, Pop L, Braicu C, Berindan-Neagoe I. Differential effect of the duration of exposure on the carcinogenicity of cadmium in MCF10A mammary epithelial cells. Food Chem Toxicol 2024; 186:114523. [PMID: 38382870 DOI: 10.1016/j.fct.2024.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The carcinogenic role of cadmium (Cd2+) in breast cancer is still debatable. Current data points to duration of exposure as the most important element. In our study, we designed an in vitro model to investigate the effects of 3 weeks versus 6 weeks of low-level CdCl2 exposure on MCF10A cells. Our results demonstrated that after 3 weeks of CdCl2 exposure the cells displayed significant changes in the DNA integrity, but there was no development of malignant features. Interestingly, after 6 weeks of exposure, the cells significantly increased their invasion, migration and colony formation capacities. Additionally, MCF10A cells exposed for 6 weeks to CdCl2 had many dysregulated genes (4905 up-regulated and 4262 down-regulated). As follows, Cd-induced phenotypical changes are accompanied by a profound modification of the transcriptomic landscape. Furthermore, the molecular alterations driving carcinogenesis in MCF10A cells exposed to CdCl2 were found to be influenced by the duration of exposure, as in the case of MEG8. This long non-coding RNA was down-regulated at 3 weeks, but up-regulated at 6 weeks of exposure. In conclusion, even very low levels of Cd (0.5 μM) can have significant carcinogenic effects on breast cells in the case of subchronic exposure.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture-Research Center for Advanced Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania.
| | - Diana Cenariu
- MedFuture-Research Center for Advanced Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MedFuture-Research Center for Advanced Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture-Research Center for Advanced Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Cristian Pop
- Environmental Health Center, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania
| | - Eugen S Gurzau
- Environmental Health Center, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania; Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania
| | - Eva Fischer-Fodor
- Tumour Biology Department, The Oncology Institute "Prof. Dr. Ion Chiricuţă", 34-36 Republicii Street, Cluj-Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| |
Collapse
|