1
|
Raza S, Siddiqui JA, Srivastava A, Chattopadhyay N, Sinha RA, Chakravarti B. Autophagy as a Therapeutic Target in Breast Tumors: The Cancer stem cell perspective. AUTOPHAGY REPORTS 2024; 3:27694127.2024.2358648. [PMID: 39006309 PMCID: PMC7616179 DOI: 10.1080/27694127.2024.2358648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity. Autophagy acts as a double-edged sword in the breast TME, with both tumor-promoting and tumor-suppressing roles. Autophagy promotes breast tumorigenesis by regulating tumor cell survival, migration and invasion, metabolic reprogramming, and epithelial-mesenchymal transition (EMT). BCSCs harness autophagy to maintain stemness properties, evade immune surveillance, and resist therapeutic interventions. Conversely, excessive, or dysregulated autophagy may lead to BCSC differentiation or cell death, offering a potential avenue for therapeutic exploration. The molecular mechanisms that regulate autophagy in BCSCs including the mammalian target of rapamycin (mTOR), AMPK, and Beclin-1 signaling pathways may be potential targets for pharmacological intervention in breast cancer. This review provides a comprehensive overview of the relationship between autophagy and BCSCs, highlighting recent advancements in our understanding of their interplay. We also discuss the current state of autophagy-targeting agents and their preclinical and clinical development in BCSCs.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Anubhav Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| |
Collapse
|
2
|
Wang P, Zhang H, Guo K, Liu C, Chen S, Pu B, Chen S, Feng T, Jiao H, Gao C. Rapamycin inhibits B16 melanoma cell viability invitro and invivo by inducing autophagy and inhibiting the mTOR/p70‑S6k pathway. Oncol Lett 2024; 27:140. [PMID: 38385108 PMCID: PMC10877231 DOI: 10.3892/ol.2024.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Rapamycin is an immunosuppressant that has been shown to prevent tumor growth following organ transplantation. However, its exact mode of antitumor action remains unknown. The present study used the B16-F10 (B16) murine melanoma model to explore the antitumor mechanism of rapamycin, and it was revealed that rapamycin reduced B16 cell viability in vitro and in vivo. In addition, in vitro and in vivo, the results of western blotting showed that rapamycin reduced Bcl2 expression, and enhanced the protein expression levels of cleaved caspase 3 and Bax, indicating that it can induce the apoptosis of B16 melanoma cells. Furthermore, the results of cell cycle analysis and western blotting showed that rapamycin induced B16 cell cycle arrest in the G1 phase, based on the reduction in the protein expression levels of CDK1, cyclin D1 and CDK4, as well as the increase in the percentage of cells in G1 phase. Rapamycin also significantly increased the number of autophagosomes in B16 melanoma cells, as determined by transmission electron microscopy. Furthermore, the results of RT-qPCR and western blotting showed that rapamycin upregulated the protein expression levels of microtubule-associated protein light chain 3 (LC3) and Beclin-1, while downregulating the expression of p62 in vitro and in vivo, thus indicating that rapamycin could trigger cellular autophagy. The present study revealed that rapamycin in combination with chloroquine (CQ) further increased LC3 expression compared with that in the CQ group, suggesting that rapamycin induced an increase in autophagy in B16 cells. Furthermore, the results of western blotting showed that rapamycin blocked the phosphorylation of p70 ribosomal S6 kinase (p70-S6k) and mammalian target of rapamycin (mTOR) proteins in vitro and in vivo, thus suggesting that rapamycin may exert its antitumor effect by inhibiting the phosphorylation of the mTOR/p70-S6k pathway. In conclusion, rapamycin may inhibit tumor growth by inducing cellular G1 phase arrest and apoptosis. In addition, rapamycin may exert its antitumor effects by inducing the autophagy of B16 melanoma cells in vitro and in vivo, and the mTOR/p70-S6k signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Haifang Zhang
- Hainan Institute for Drug Control, Haikou, Hainan 570216, P.R. China
| | - Kaikai Guo
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, Hainan 570216, P.R. China
| | - Shimin Chen
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Baopeng Pu
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Sirun Chen
- Hainan Medical University Press, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Tong Feng
- School of Pharmacy, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Hanyi Jiao
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Chang Gao
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
3
|
Dehghanzad M, Mohammadi M, Nejati M, Pouremamali F, Maroufi NF, Akbarzadeh M, Samadi N, Nouri M. The potential therapeutic effect of melatonin in oxaliplatin combination therapy against chemoresistant colorectal cancer cells. Mol Biol Rep 2024; 51:348. [PMID: 38401018 DOI: 10.1007/s11033-024-09316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Oxaliplatin is one of the main therapeutics in colorectal cancer (CRC) chemotherapy. However, in light of multidrug resistance (MDR) phenotype development, the efficacy of oxaliplatin has decreased. This study aimed to assess the potential therapeutic effect of melatonin in oxaliplatin combination therapy for drug-resistant colorectal cancer cells. METHODS AND RESULTS Initially, the oxaliplatin-resistant cell line was created of LS174T (LS174T/DR) by using the oxaliplatin IC50 concentration and resting cycles. MTT assays and flow cytometry were applied for assessing cell viability and apoptotic cells. The mRNA expression level of Bax, Bcl2, MT1, MT2, and ABCB1 as well as protein levels of ABCB1, Bcl2, BAX were measured by the qRT-PCR and western blot techniques respectively. P-gp activity was assessed by Rho123 staining. The IC50 concentration of oxaliplatin in resistant cells was increased from 500.7 ± 0.2 nM to 7119 ± 0.1 nM. Bcl2, MT1, MT2, and ABCB1 mRNA plus protein expression levels of Bcl2 and ABCB1 were significantly reduced in resistant cells, along with a marked increase in Bax mRNA and protein levels compared to parental cells. Rho 123 staining revealed a marked reduction in P-gp activities in the combination-treated group compared to the oxaliplatin-treated group. CONCLUSIONS The results of cytotoxicity assays, MTT, and flow cytometry revealed that the combination of melatonin and oxaliplatin exerts synergistic effects on induction of oxaliplatin's cytotoxicity in CRC. Our research suggests that combining the treatments of melatonin and oxaliplatin may be considered as a new approach to overcoming oxaliplatin resistance in CRC patients.
Collapse
Affiliation(s)
- Masoumeh Dehghanzad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Mohammadi
- Department of Medical Laboratory Science, Faculty of Medicine, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mohaddeseh Nejati
- Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farhad Pouremamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
- Department of Human Genetics, McGill University, Montreal, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Canada
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Naser Samadi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran.
| |
Collapse
|
4
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
5
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
6
|
Huang B, Wen G, Li R, Wu M, Zou Z. Integrated network pharmacology, bioinformatics, and molecular docking to explore the mechanisms of berberine regulating autophagy in breast cancer. Medicine (Baltimore) 2023; 102:e35070. [PMID: 37682166 PMCID: PMC10489552 DOI: 10.1097/md.0000000000035070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Berberine exhibits anticancer efficacy against a variety of malignancies, including breast cancer (BRCA). However, the underlying mechanism is ambiguous. This study sought to explore the targets and the probable mechanism of berberine regulating autophagy in BRCA through network pharmacology, bioinformatics, and molecular docking. The targets of berberine and autophagy-modulated genes were derived from online databases, and the Cancer Genome Atlas database was used to identify the differentially expressed genes of BRCA. Then, through intersections, the autophagy-modulated genes regulated by berberine (AMGRBs) in BRCA were obtained. Next, we established a protein-protein interaction network using the Search Tool for the Retrieval of Interacting Genes database. Afterward, gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were employed to explore the targets' biological functions. Additionally, molecular docking was conducted to verify the binding ability of berberine to the targets. Finally, to determine the prognostic value of AMGRBs in BRCA, we performed overall survival analyses. We identified 29 AMGRBs in BRCA, including CASP3, MTOR, AKT1, GSK3B, PIK3CA, and others. Gene ontology enrichment analysis showed that the AMGRBs in BRCA were associated with autophagy regulation, negative regulation of catabolic process, macroautophagy, and other biological processes. Kyoto encyclopedia of genes and genomes enrichment analyses indicated that AMGRBs in BRCA were involved in epidermal growth factor receptor tyrosine kinase inhibitor resistance, PI3K/Akt signaling pathway, JAK-STAT signaling pathway, and others. Molecular docking results proved that berberine had strong binding affinities with AMGRBs in BRCA. Survival analyses indicated that ATM, HTR2B, LRRK2, PIK3CA, CDK5, and IFNG were associated with the prognosis of BRCA. This study identified the targets and pathways of berberine for regulating autophagy in BRCA, which contributed to a better understanding of berberine's function in BRCA and serve as a foundation and reference for further study and therapeutic application of berberine.
Collapse
Affiliation(s)
- Bowan Huang
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gengzhi Wen
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Shari K, El Gedaily RA, Allam RM, Meselhy KM, Khaleel AE, Abdel-Sattar E. Jatrophone: a cytotoxic macrocylic diterpene targeting PI3K/AKT/NF-κB pathway, inducing apoptosis and autophagy in resistant breast cancer cells. BMC Complement Med Ther 2023; 23:293. [PMID: 37608270 PMCID: PMC10463460 DOI: 10.1186/s12906-023-04113-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Breast cancer is a prevalent malignant tumor that affects women worldwide. The primary challenge in treating breast cancer is combating drug resistance, which contributes to relapse and metastasis. Jatrophone is a unique macrocyclic jatrophane diterpene found in various Jatropha and Euphorbia species. It possesses diverse biological and pharmacological activities, including anticancer activity. However, it is unclear whether jatrophone can overcome drug resistance in breast cancer. METHODS This study includes the investigation of the cytotoxicity of jatrophone on doxorubicin-resistant breast cancer cells (MCF-7ADR) and the underlying molecular mechanisms. The effects of jatrophone on cell viability were determined using the sulforhodamine B (SRB) assay, while flow cytometry was used to evaluate cell cycle progression, apoptosis, and autophagy. A scratch assay was conducted to observe cell migration, and western blotting was used to measure downstream protein levels (PI3K, AKT, and NF-κB). Unpaired Student's t-tests were used for comparison between the two groups and the results were analyzed by one-way ANOVA with Tukey- Kremer post hoc test. RESULTS It was shown that jatrophone exhibited potent cytotoxic activity on MCF-7ADR cells in a dose-dependent manner, with an IC50 value of 1.8 µM. It also significantly induced cell cycle S and G/M phase arrest. Interestingly, jatrophone induced both early and late apoptotic cell death, as well as autophagic cell death, with negligible necrosis. Furthermore, jatrophone treatment diminished the migration of MCF-7ADR cells. At the molecular level, jatrophone treatment significantly down-regulated the expression levels of PI3K, AKT, and NF-κB. β. CONCLUSIONS The results of the study suggest that jatrophone decreases the proliferation of MCF-7/ADR cells at a low micromolar concentration; induces cell cycle arrest; promotes apoptotic, and autophagic cell death; inhibits migration and EMT; and works on resistance by a mechanism involving the inhibition of the PI3K/Akt/ NF-κB pathway. These findings provide evidence of the potential of jatrophone to be a promising lead compound for targeting doxorubicin-resistant breast cancer cells and could be further investigated for its clinical application as a chemotherapy adjuvant.
Collapse
Affiliation(s)
- Khawlah Shari
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Rania A El Gedaily
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Rasha M Allam
- Pharmacology Department, Medical Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Khaled M Meselhy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Amal E Khaleel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
| |
Collapse
|