1
|
Kuang B, Geng N, Yi M, Zeng Q, Fan M, Xian M, Deng L, Chen C, Pan Y, Kuang L, Luo F, Xie Y, Liu C, Deng Z, Nie M, Du Y, Guo F. Panaxatriol exerts anti-senescence effects and alleviates osteoarthritis and cartilage repair fibrosis by targeting UFL1. J Adv Res 2024:S2090-1232(24)00470-3. [PMID: 39442872 DOI: 10.1016/j.jare.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/01/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA), the most common degenerative joint disease, can eventually lead to disability. However, no safe or effective intervention is currently available. Therefore, there is an urgent need to develop effective drugs that reduce cartilage damage and treat OA. OBJECTIVES This study aimed to ascertain the potential of panaxatriol, a natural small molecule, as a therapeutic drug for alleviating the progression of OA. METHODS An in vitro culture of human cartilage explants and C28/I2 human chondrocytes and an in vivo surgically induced OA mouse model were used to evaluate the chondroprotective effect of panaxatriol. The Drug Affinity Responsive Target Stability assay, CRISPR-Cas9 assay, Whole-transcriptome RNA sequencing analysis and agonist or antagonist assays were used to identify the target and potential signaling pathways of panaxatriol. Poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) was used to construct the sustained-release system of panaxatriol. RESULTS Panaxatriol protected against OA by regulating chondrocyte metabolism. Ubiquitin-fold modifier 1-specific E3 ligase 1 (UFL1) was identified as a novel target of panaxatriol. Whole transcriptome RNA sequencing showed that UFL1 was closely related to cell senescence. Panaxatriol inhibited chondrocyte senescence through UFL1/forkhead box O1 (FOXO1)/P21 and UFL1/NF-κB/SASPs signaling pathways. It also could inhibit fibrocartilage formation during cartilage repair via the UFL1/FOXO1/Collagen 1 signaling pathway. Finally, we constructed a sustained-release system for panaxatriol based on PLGA-PEG, which reduced the number of intra-articular injections, thereby alleviating joint swelling and injury. CONCLUSIONS Panaxatriol exerts anti-senescence effects and has the potential to delay OA progression and reduce cartilage repair fibrosis by targeting UFL1.
Collapse
Affiliation(s)
- Biao Kuang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Miao Yi
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qiqi Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mao Nie
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Fan SH, Chang Y, Xiong XY, Xiang M, Yuan WL, Yang XQ, Wei WH, Chen L, Cheng MN, Zhu FH, He SJ, Zuo JP, Lin ZM. Reversible SAHH inhibitor ameliorates MIA-induced osteoarthritis of rats through suppressing MEK/ERK pathway. Biomed Pharmacother 2024; 170:115975. [PMID: 38070246 DOI: 10.1016/j.biopha.2023.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Osteoarthritis (OA) is characterized by gradual articular cartilage degradation, accompanied by persistent low-grade joint inflammation, correlating with radiographic and pain-related progression. The latent therapeutic potential of DZ2002, a reversible inhibitor of S-adenosyl-L-homocysteine hydrolase (SAHH), holds promise for OA intervention. This study endeavored to examine the therapeutic efficacy of DZ2002 within the milieu of OA. The cytotoxicity of DZ2002 was evaluated using the MTT assay on bone marrow-derived macrophages. The inhibitory impact of DZ2002 during the process of osteoclastogenesis was assessed using TRAP staining, analysis of bone resorption pits, and F-actin ring formation. Mechanistic insights were derived from qPCR and Western blot analyses. Through the intra-articular injection of monosodium iodoacetate (MIA), an experimental rat model of OA was successfully instituted. This was subsequently accompanied by a series of assessments including Von Frey filament testing, analysis of weight-bearing behaviors, and micro-CT imaging, all aimed at assessing the effectiveness of DZ2002. The findings emphasized the effectiveness of DZ2002 in mitigating osteoclastogenesis induced by M-CSF/RANKL, evident through a reduction in TRAP-positive OCs and bone resorption. Moreover, DZ2002 modulated bone resorption-associated gene and protein expression (CTSK, CTR, Integrin β3) via the MEK/ERK pathway. Encouragingly, DZ2002 also alleviates MIA-induced pain, cartilage degradation, and bone loss. In conclusion, DZ2002 emerges as a potential therapeutic contender for OA, as evidenced by its capacity to hinder in vitro M-CSF/RANKL-induced osteoclastogenesis and mitigate in vivo osteoarthritis progression. This newfound perspective provides substantial support for considering DZ2002 as a compelling agent for osteoarthritis intervention.
Collapse
Affiliation(s)
- Shu-Hui Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Chang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-Yu Xiong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mai Xiang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Long Yuan
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen-Hui Wei
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meng-Nan Cheng
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian-Ping Zuo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ze-Min Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|