1
|
Hao XD, Xu WH, Zhang X, Xue J. Targeting ferroptosis: a novel therapeutic strategy for the treatment of retinal diseases. Front Pharmacol 2024; 15:1489877. [PMID: 39539617 PMCID: PMC11557320 DOI: 10.3389/fphar.2024.1489877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis plays a vital role in the progression of various retinal diseases. The analysis of the mechanism of retinal cell ferroptosis has brought new targeted strategies for treating retinal vascular diseases, retinal degeneration and retinal nerve diseases, and is also a major scientific issue in the field of ferroptosis. In this review, we summarized results from currently available in vivo and in vitro studies of multiple eye disease models, clarified the pathological role and molecular mechanism of ferroptosis in retinal diseases, summed up the existing pharmacological agents targeting ferroptosis in retinal diseases as well as highlighting where future research efforts should be directed for the application of ferroptosis targeting agents. This review indicates that ferroptosis of retinal cells is involved in the progression of age-related/inherited macular degeneration, blue light-induced retinal degeneration, glaucoma, diabetic retinopathy, and retinal damage caused by retinal ischemia-reperfusion via multiple molecular mechanisms. Nearly 20 agents or extracts, including iron chelators and transporters, antioxidants, pharmacodynamic elements from traditional Chinese medicine, ferroptosis-related protein inhibitors, and neuroprotective agents, have a remissioning effect on retinal disease in animal models via ferroptosis inhibition. However, just a limited number of agents have received approval or are undergoing clinical trials for conditions such as iron overload-related diseases. The application of most ferroptosis-targeting agents in retinal diseases is still in the preclinical stage, and there are no clinical trials yet. Future research should focus on the development of more potent ferroptosis inhibitors, improved drug properties, and ideally clinical testing related to retinal diseases.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wen-Hua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, China
| | - Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Zhuang Y, Li D, Tang C, Zhao X, Wang R, Tao D, Huang X, Liu X. Slc4a7 Regulates Retina Development in Zebrafish. Int J Mol Sci 2024; 25:9613. [PMID: 39273559 PMCID: PMC11403715 DOI: 10.3390/ijms25179613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of genetic disorders characterized by the progressive degeneration of retinal cells, leading to irreversible vision loss. SLC4A7 has emerged as a candidate gene associated with IRDs, yet its mechanisms remain largely unknown. This study aims to investigate the role of slc4a7 in retinal development and its associated molecular pathogenesis in zebrafish. Morpholino oligonucleotide knockdown, CRISPR/Cas9 genome editing, quantitative RT-PCR, eye morphometric measurements, immunofluorescent staining, TUNEL assays, visual motor responses, optokinetic responses, rescue experiments, and bulk RNA sequencing were used to assess the impact of slc4a7 deficiency on retinal development. Our results demonstrated that the knockdown of slc4a7 resulted in a dose-dependent reduction in eye axial length, ocular area, and eye-to-body-length ratio. The fluorescence observations showed a significant decrease in immunofluorescence signals from photoreceptors and in mCherry fluorescence from RPE in slc4a7-silenced morphants. TUNEL staining uncovered the extensive apoptosis of retinal cells induced by slc4a7 knockdown. Visual behaviors were significantly impaired in the slc4a7-deficient larvae. GO and KEGG pathway analyses reveal that differentially expressed genes are predominantly linked to aspects of vision, ion channels, and phototransduction. This study demonstrates that the loss of slc4a7 in larvae led to profound visual impairments, providing additional insights into the genetic mechanisms predisposing individuals to IRDs caused by SLC4A7 deficiency.
Collapse
Affiliation(s)
- Youyuan Zhuang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Cheng Tang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyi Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruting Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Di Tao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiufeng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinting Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
3
|
Li Q, Zhang Y, Liu P, Wang C, Pan Y, Nie Y, Tang W, Wang Q, Song Q. Astragaloside IV attenuates ferroptosis and protects against iron overload-induced retinal injury. Exp Eye Res 2024; 246:110021. [PMID: 39117136 DOI: 10.1016/j.exer.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Retinal injury may be exacerbated by iron overload. Astragaloside IV (AS-IV) has potential applications in the food and healthcare industry to promote eye health. We sought to determine the mechanisms responsible for the protective effects of AS-IV on photoreceptor and retinal pigment epithelium cell death induced by iron overload. We conducted in vitro and in vivo experiments involving AS-IV pretreatment. We tested AS-IV for its ability to protect iron-overload mice from retinal injury. In particular, we analyzed the effects of AS-IV on iron overload-induced ferroptosis in 661W and ARPE-19 cells. AS-IV not only attenuated iron deposition and retinal injury in iron-overload mice but also effectively reduced iron overload-induced ferroptotic cell death in 661W and ARPE-19 cells. AS-IV effectively prevented ferroptosis by inhibiting iron accumulation and lipid peroxidation. In addition, inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) eliminated the protective effect of AS-IV against ferroptosis. The results suggest that ferroptosis might be a significant cause of retinal cell death associated with iron overload. AS-IV provides protection from iron overload-induced ferroptosis, partly by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, 510555, Guangdong, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang, 050200, Hebei, China
| | - Pan Liu
- Department of General Surgery, Chengdu First People's Hospital/Chengdu Integrated TCM & Western Medicine Hospital, No. 18, Wangxiang North Road, Chengdu, 610041, Sichuan, China
| | - Cong Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Yuxu Pan
- Sichuan Vocational College of Health and Rehabilitation, No.3 Deming Road, Zigong, 643030, Sichuan, China
| | - Yingying Nie
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China
| | - Wen Tang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Qun Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Qiongtao Song
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, 510555, Guangdong, China.
| |
Collapse
|
4
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
6
|
Liu D, Liu Z, Liao H, Chen ZS, Qin B. Ferroptosis as a potential therapeutic target for age-related macular degeneration. Drug Discov Today 2024; 29:103920. [PMID: 38369100 DOI: 10.1016/j.drudis.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Cell death plays a crucial part in the process of age-related macular degeneration (AMD), but its mechanisms remain elusive. Accumulating evidence suggests that ferroptosis, a novel form of regulatory cell death characterized by iron-dependent accumulation of lipid hydroperoxides, has a crucial role in the pathogenesis of AMD. Numerous studies have suggested that ferroptosis participates in the degradation of retinal cells and accelerates the progression of AMD. Furthermore, inhibitors of ferroptosis exhibit notable protective effects in AMD, underscoring the significance of ferroptosis as a pivotal mechanism in the death of retinal cells during the process of AMD. This review aims to summarize the molecular mechanisms of ferroptosis in AMD, enumerate potential inhibitors and discuss the challenges and future opportunities associated with targeting ferroptosis as a therapeutic strategy, providing important information references and insights for the prevention and treatment of AMD.
Collapse
Affiliation(s)
- Dongcheng Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Hongxia Liao
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; Aier Eye Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
7
|
Yang D, Xia X, Xi S. Salvianolic acid A attenuates arsenic-induced ferroptosis and kidney injury via HIF-2α/DUOX1/GPX4 and iron homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168073. [PMID: 37879473 DOI: 10.1016/j.scitotenv.2023.168073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Arsenic (As) is a prevalent pollutant in the environment and causes a high frequency of kidney disease in areas of high arsenic contamination, but its pathogenic mechanisms have yet to be completely clarified. Ferroptosis is a new form of cell death mainly dependent on lipid peroxidation and iron accumulation. Several reports have suggested that ferroptosis is operative in a spectrum of diseases caused by arsenic exposure, including in the lungs, pancreas, and testis. However, the mechanism and exact role of ferroptosis in arsenic-induced kidney injury is not known. Firstly, by constructing in vivo and in vitro arsenic exposure models, we confirmed the occurrence of ferroptosis based on the identification of the ability of NaASO2 to cause kidney injury. In addition, we found that arsenic exposure could upregulate DUOX1 expression in kidney and HK-2 cells, and after knocking down DUOX1 using siRNA was able to significantly upregulate GPX4 expression and attenuate ferroptosis. Subsequently using bioinformatics, we identified and proved the involvement of HIF-2α in the course of ferroptosis, and further confirmed by dual luciferase assay that HIF-2α promotes DUOX1 transcription to increase its expression. Finally, intervention with the natural ingredient SAA significantly attenuated arsenic-induced ferroptosis and kidney injury. These results showed that arsenic could cause ferroptosis and kidney injury by affecting HIF-2α/DUOX1/GPX4 and iron homeostasis and that SAA was an effective intervention component. This study not only discovered the molecular mechanism of sodium arsenite-induced kidney injury but also explored an active ingredient with intervention potential, providing a scientific basis for the prevention and treatment of sodium arsenite-induced kidney injury.
Collapse
Affiliation(s)
- Desheng Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Xinyu Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|