1
|
Saikia L, Talukdar NC, Dutta PP. Exploring the Therapeutic Role of Flavonoids Through AMPK Activation in Metabolic Syndrome: A Narrative Review. Phytother Res 2025; 39:1403-1421. [PMID: 39789806 DOI: 10.1002/ptr.8428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025]
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated metabolic abnormalities that significantly elevate the risk of cardiovascular disease, obesity, and diabetes. Flavonoids, a diverse class of bioactive polyphenolic compounds found in plant-derived foods and beverages, have garnered increasing attention as potential therapeutic agents for improving metabolic health. This review provides a comprehensive analysis of the therapeutic effects of flavonoids in the context of the MetS, with a particular focus on their modulation of the AMP-activated protein kinase (AMPK) pathway. AMPK serves as a central regulator of cellular energy balance, glucose metabolism, and lipid homeostasis, making it a critical target for metabolic intervention. Through a systematic review of the literature up to April 2024, preclinical studies across various flavonoid subclasses, including flavonols, and flavan-3-ols, were analysed to elucidate their mechanistic roles in metabolic regulation. Many studies suggests that flavonoids enhance glycolipid metabolism by facilitating glucose transporter 4 (GLUT4) translocation and activating the AMPK pathway, thereby improving glycemic control in diabetes models. In obesity-related studies, flavonoids demonstrated significant inhibitory effects on lipid synthesis, reduced adipogenesis, and attenuated proinflammatory cytokine secretion via AMPK activation. These findings show the broad therapeutic potential of flavonoids in addressing the MetS and its associated disorders. While these preclinical insights highlight flavonoids as promising natural agents for metabolic health improvement, it is important to note that their excessive concentrations may disrupt these pathways, potentially leading to metabolic imbalance and cytotoxicity. Further studies and clinical trials are essential to determine optimal dosing regimens, formulations, and the long-term safety and efficacy of flavonoids. This review highlights the importance of flavonoids for natural interventions targeting MetS and its comorbidities, offering a foundation for future translational research.
Collapse
Affiliation(s)
- Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | | | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
2
|
Li R. Multifaceted therapeutic approach via thiazolidinedione-infused magnolol in chitosan nanoparticles targeting hyperlipidemia and oxidative stress in gestational diabetes mellitus in experimental mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2753-2768. [PMID: 39264385 DOI: 10.1007/s00210-024-03404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Recent advancements in nanotechnology have sparked interest in the synthesis of chitosan nanoparticles and their potential applications in medicine. This study investigates the synthesis of chitosan nanoparticles infused with thiazolidinedione and magnolol (TZ/ML-ChNPs) and their therapeutic effects on gestational diabetes mellitus (GDM) in experimental mice. Using streptozotocin-induced diabetic pregnant mice as a model, the study examines the anti-diabetic effects of TZ/ML-ChNPs in vitro and explores possible mechanisms of action. Results show a notable decrease in α-amylase and α-glucosidase activities in TZ/ML-ChNPs-treated samples. Cytocompatibility and flow cytometry analysis in streptozotocin-induced diabetic pregnant mice conducted on RIN-5F cell line demonstrate the safety profile of TZ/ML-ChNPs. The primary objective of this research is to assess whether TZ/ML-ChNPs can mitigate hyperlipidemia and oxidative stress in diabetic pregnant mice. Chitosan nanoparticles with thiazolidinedione and magnolol have therapeutic effects that may be used in clinical and pharmaceutical applications.
Collapse
Affiliation(s)
- Rui Li
- Department of Obstetrics and Gynecology, Shanxi Provincial Children's Hospital, (Shanxi Maternal and Child Health Center) 310 Changzhi Road, Xiaodian District, Taiyuan City, 030032, Shanxi Province, China.
| |
Collapse
|
3
|
Shaikh S, Lee EJ, Ahmad K, Choi I. Therapeutic potential and action mechanisms of licochalcone B: a mini review. Front Mol Biosci 2024; 11:1440132. [PMID: 39021879 PMCID: PMC11251949 DOI: 10.3389/fmolb.2024.1440132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Licochalcone B (LicB), a chalcone derived from Glycyrrhiza uralensis and Glycyrrhiza glabra, has received considerable attention due to its diverse pharmacological properties. Accumulated data indicates that LicB has pharmacological effects that include anti-cancer, hepatoprotective, anti-inflammatory, and neuroprotective properties. The action mechanism of LicB has been linked to several molecular targets, such as phosphoinositide 3-kinase/Akt/mammalian target of rapamycin, p53, nuclear factor-κB, and p38, and the involvements of caspases, apoptosis, mitogen-activated protein kinase-associated inflammatory pathways, and anti-inflammatory nuclear factor erythroid 2-related factor 2 signaling pathways highlight the multifaceted therapeutic potential of LicB. This review systematically updates recent findings regarding the pharmacological effects of LicB, and the mechanistic pathways involved, and highlights the potential use of LicB as a promising lead compound for drug discovery.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
4
|
Ye J, Ma J, Rozi P, Kong L, Zhou J, Luo Y, Yang H. The polysaccharides from seeds of Glycyrrhiza uralensis ameliorate metabolic disorders and restructure gut microbiota in type 2 diabetic mice. Int J Biol Macromol 2024; 264:130622. [PMID: 38447833 DOI: 10.1016/j.ijbiomac.2024.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
T2D and its complications are significant threats to human health and are among the most concerning metabolic diseases worldwide. Previous studies have revealed that Glycyrrhiza uralensis polysaccharide extract (GUP) exhibits remarkable antioxidant capabilities and inhibits alpha-glucosidase activity. However, whether GUP improves glycemic control in T2D is unknown. This study aims to investigate the effects of GUP on glucose and lipid metabolism as well as the intestinal microbiota in HFD/STZ-induced T2D. The results demonstrated that GUP could significantly ameliorate hyperglycemia, insulin resistance, oxidative stress, and reduce liver lipid levels in T2D mice. Furthermore, it also enhanced the integrity of the intestinal barrier in T2D mice by reducing the levels of pro-inflammatory cytokines and serum LPS levels. Interestingly, GUP treatment significantly lowered serum creatinine and urea nitrogen levels, mitigating renal function deterioration and interstitial fibrosis. Additionally, GUP intervention increased the α diversity of gut microbiota, promoting beneficial species like Akkermansia, Lactobacillus, Romboutsia and Faecalibaculum, while decreasing harmful ones such as Bacteroides, Escherichia-Shigella, and Clostridium sensu stricto 1 in T2D mice. Overall, this study highlights the potential of GUP in alleviating complications and enhancing intestinal health in T2D mice, providing valuable insights into dietary strategies for diabetes control and overall health improvement.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jie Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Parhat Rozi
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Lingming Kong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China
| | - Haiyan Yang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
5
|
Ahmad K, Lee EJ, Ali S, Han KS, Hur SJ, Lim JH, Choi I. Licochalcone A and B enhance muscle proliferation and differentiation by regulating Myostatin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155350. [PMID: 38237512 DOI: 10.1016/j.phymed.2024.155350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul 05702, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
6
|
Ahmad SS, Ahmad K, Hwang YC, Lee EJ, Choi I. Therapeutic Applications of Ginseng Natural Compounds for Health Management. Int J Mol Sci 2023; 24:17290. [PMID: 38139116 PMCID: PMC10744087 DOI: 10.3390/ijms242417290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections. Ginseng is a well-known herbal medication, known to alleviate the actions of several cytokines. The article concludes with future directions and significant application of ginseng compounds for researchers in understanding the promising role of ginseng in the treatment of several diseases. Overall, this study was undertaken to highlight the broad-spectrum therapeutic applications of ginseng compounds for health management.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|