1
|
He Y, Shen X, Zhai K, Nian S. Advances in understanding the role of interleukins in pulmonary fibrosis (Review). Exp Ther Med 2025; 29:25. [PMID: 39650776 PMCID: PMC11619568 DOI: 10.3892/etm.2024.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive, irreversible disease characterized by heterogeneous interstitial lung tissue damage. It originates from persistent or repeated lung epithelial injury and leads to the activation and differentiation of fibroblasts into myofibroblasts. Interleukins (ILs) are a group of lymphokines crucial for immunomodulation that are implicated in the pathogenesis of PF. However, different types of ILs exert disparate effects on PF. In the present review, based on the effect on PF, ILs are classified into three categories: i) Promotors of PF; ii) inhibitors of PF; and iii) those that exert dual effects on PF. Several types of ILs can promote PF by provoking inflammation, initiating proliferation and transdifferentiation of epithelial cells, exacerbating lung injury, while other ILs can inhibit PF through suppressing expression of inflammatory factors, modulating the Th1/Th2 balance and autophagy. The present review summarizes the association of ILs and PF, focusing on the roles and mechanisms of ILs underlying PF.
Collapse
Affiliation(s)
- Yuqing He
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xuebin Shen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, P.R. China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
2
|
Jung MA, Lee JY, Kim YJ, Ji KY, Le MH, Jung DH, Kim YH, Kim WJ, Moon BC, Kim BY, Kim T. Inula japonica Thunb. and its active compounds ameliorate airway inflammation by suppressing JAK-STAT signaling. Biomed Pharmacother 2025; 183:117852. [PMID: 39854818 DOI: 10.1016/j.biopha.2025.117852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Asthma, a chronic inflammatory disease, remains a global health challenge due to its complex pathophysiology and the limited treatment efficacy. This study explored the effect of Inula japonica Thunb. water extract (IJW) on asthma and its protective mechanisms. To assess the effects of IJW, we established an experimental asthma model in BALB/c mice using ovalbumin (OVA). Airway hyper-responsiveness (AHR) in response to methacholine was measured. We quantified inflammatory cell infiltration and cytokine and chemokine levels in bronchoalveolar lavage fluid (BALF), as well as total IgE levels in serum. Staining with hematoxylin and eosin and periodic acid-Schiff was used to examine the impact of IJW on lung pathology. We performed RNA sequencing to identify differentially expressed genes, which were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We used interleukin (IL)-4/IL-13-treated human bronchial epithelial (HBE) cells to explore the associated mechanisms. IJW showed therapeutic effects against OVA-induced asthma by alleviating AHR, peribronchial inflammation, mucus hypersecretion, and collagen fiber deposition. It reduced total IgE levels in the serum and IL-4, IL-5, IL-13, eotaxin, macrophage-derived chemokines, and periostin levels in BALF. In IL-4/IL-13-treated HBE cells, IJW and its components suppressed the Janus kinase-signal transducer and activator of the transcription (JAK-STAT) signaling. These findings support IJW's potential as a pharmacological agent for allergic airway inflammation and asthma.
Collapse
Affiliation(s)
- Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea; Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yu Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Mi Han Le
- Research Infrastructure Team, R&D Strategy Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Wook Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
3
|
Luo X, Wang Y, Mao Y, Xu X, Gu W, Li W, Mao C, Zheng T, Dong L. Nebulization of Hypoxic hUCMSC-EVs Attenuates Airway Epithelial Barrier Defects in Chronic Asthma Mice by Transferring CAV-1. Int J Nanomedicine 2024; 19:10941-10959. [PMID: 39493276 PMCID: PMC11531287 DOI: 10.2147/ijn.s476151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Background Nebulization of hypoxic human umbilical cord mesenchymal stem cell-derived extracellular vesicles (Hypo-EVs) can suppress airway inflammation and remodeling in a chronic asthmatic mouse; however, the exact mechanism remains unclear. Recently, airway epithelial barrier defects have been regarded as crucial therapeutic targets in asthma. The aim of this study was to investigate whether and how Hypo-EVs protect against the disruption of the airway epithelial barrier under asthmatic conditions. Methods The therapeutic effects of Hypo-EVs on airway epithelial barrier defects were evaluated in ovalbumin (OVA)-induced asthmatic mice and in IL-4 and IL-13-induced HBE135-E6E7 cell models by detecting cell monolayer leakage and junctional protein expression. The protein levels in Hypo-EVs were determined by Western blotting, and a gene knockdown approach was used to investigate the biofactors in Hypo-EVs. Results Nebulization of Hypo-EVs directly alleviated airway epithelial barrier defects in asthmatic mice, as evidenced by colocalization with bronchial epithelial cells, decreased albumin concentration, and increased ZO-1 and E-cadherin expression. In vitro, Hypo-EV treatment dramatically rescued the increase in airway cell permeability, and upregulated the ZO-1 and E-cadherin protein expressions. Based on WB analysis, we found that caveolin-1 (CAV-1) was strongly enriched in Hypo-EVs. The knockdown of CAV-1 protein levels in Hypo-EVs significantly impaired Hypo-EV-mediated barrier protection in vitro and in vivo. Moreover, CAV-1 knockdown significantly abolished the beneficial effects of Hypo-EVs on airway inflammation and remodeling in asthmatic mice. In addition, we showed that IL-4/IL-13-induced airway epithelial barrier defects were mainly related to activation of STAT6 phosphorylation (p-STAT6), and overexpression of CAV-1 or Hypo-EV treatment inhibited the levels of p-STAT6 in IL-4/IL-13-induced HBE135-E6E7 cells. Conclusion Nebulization of Hypo-EVs can attenuate airway epithelial barrier defects in asthma by delivering CAV-1 to inhibit p-STAT6 expression and may be used to treat other barrier defect diseases.
Collapse
Affiliation(s)
- Xinkai Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Ying Wang
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Yufei Mao
- Department of Ultrasound Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Xiaowei Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Weifeng Gu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Wen Li
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
4
|
Ding Z, Xiao X, Fan L, Mao Z, Sun C, Li N, Zhang Q. Circ_0070934 promotes MGAT3 expression and inhibits epithelial-mesenchymal transition in bronchial epithelial cells by sponging miR-199a-5p. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:23. [PMID: 38521909 PMCID: PMC10960995 DOI: 10.1186/s13223-024-00890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Circular RNA (circRNA) has the potential to serve as a crucial regulator in the progression of bronchial asthma. The objective of this investigation was to elucidate the functional dynamics of the circ_0070934/miR-199a-5p/Mannoside acetylglucosaminyltransferase 3 (MGAT3) axis in the development of asthma. METHODS Circ_0070934, miR-199a-5p and MGAT3 in peripheral venous blood of 38 asthmatic patients and 43 healthy controls were detected by qRT-PCR, and the expression of MGAT3 protein was examined by ELISA. The GSE148000 dataset was analyzed for differences in MGAT3. The BEAS-2B cells were transfected with circ_0070934 plasmid and small interfering RNA, miR-199a-5p mimics and inhibitors. The apoptosis level was detected by flow cytometry and MGAT3 was detected by qRT-PCR and Western blot. The expression of E-cadherin, N-cadherin, Vimentin was examined by Western blot. Interleukin-4 (IL-4) and IL-13 were used to co-stimulate BEAS-2B cells as an asthmatic airway epithelial cell model. BEAS-2B cells exposed to type 2 cytokines (IL-4 and IL-13) were treated with circ_0070934 plasmid, and the expression of E-cadherin, N-cadherin, and Vimentin was detected by Western blot. The binding relationships were verified using dual-luciferase reporter assay and miRNA pull-down assay. RESULTS The expression of circ_0070934 and MGAT3 in peripheral venous blood of asthmatic patients was down-regulated, and the expression of miR-199a-5p was up-regulated. And the expression of MGAT3 was reduced in sputum of asthma patients. Down-regulating the expression of circ_0070934 could promote apoptosis of BEAS-2B cells and increase epithelial-mesenchymal transition (EMT), and this effect can be partially reversed by down-regulating miR-199a-5p. Circ_0070934 could inhibit the process of epithelial mesenchymal transition induced by IL-4 and IL-13 in BEAS-2B cells. In addition, miR-199a-5p could respectively bind to circ_0070934 and MGAT3. CONCLUSION The findings of this study indicate that circ_0070934 may function as a competitive endogenous RNA (ceRNA) of miR-199a-5p, thereby modulating the expression of MGAT3 and impacting the process of EMT in bronchial epithelial cells. These results contribute to the establishment of a theoretical framework for advancing the prevention and treatment strategies for asthma.
Collapse
Affiliation(s)
- Ziqi Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Xinru Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Liang Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Zhengdao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Chuang Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Na Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China.
| |
Collapse
|