1
|
Yin Y, Shuai F, Liu X, Zhao Y, Han X, Zhao H. Biomaterials and therapeutic strategies designed for tooth extraction socket healing. Biomaterials 2025; 316:122975. [PMID: 39626339 DOI: 10.1016/j.biomaterials.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024]
Abstract
Tooth extraction is the most commonly performed oral surgical procedure, with a wide range of clinical indications. The oral cavity is a complex microenvironment, influenced by oral movements, salivary flow, and bacterial biofilms. These factors can contribute to delayed socket healing and the onset of post-extraction complications, which can burden patients' esthetic and functional rehabilitation. Achieving effective extraction socket healing requires a multidisciplinary approach. Recent advancements in materials science and bioengineering have paved the way for developing novel strategies. This review outlines the fundamental healing processes and cellular-molecular interactions involved in the healing of extraction sockets. It then delves into the current landscape of biomaterials for socket healing, highlighting emerging strategies and potential targets that could transform the treatment paradigm. Building upon this foundation, this review also presents future directions and identifies challenges associated with the clinical application of biomaterials for extraction socket healing.
Collapse
Affiliation(s)
- Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
2
|
Yuan MJ, Huang HC, Shi HS, Hu XM, Zhao Z, Chen YQ, Fan WJ, Sun J, Liu GB. MicroRNA-122-5p is upregulated in diabetic foot ulcers and decelerates the transition from the inflammatory to the proliferative stage. World J Diabetes 2025; 16:100113. [PMID: 40236859 PMCID: PMC11947911 DOI: 10.4239/wjd.v16.i4.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Shifting from the inflammatory to the proliferative phase represents a pivotal step during managing diabetic foot ulcers (DFUs); however, existing medical interventions remain insufficient. MicroRNAs (miRs) highlight notable capacity for accelerating the repair process of DFUs. Previous research has demonstrated which miR-122-5p regulates matrix metalloproteinases under diabetic conditions, thereby influencing extracellular matrix dynamics. AIM To investigate the impact of miR-122-5p on the transition from the inflammatory to the proliferative stage in DFU. METHODS Analysis for miR-122-5p expression in skin tissues from diabetic ulcer patients and mice was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). A diabetic wound healing model induced by streptozotocin was used, with mice receiving intradermal injections of adeno-associated virus -DJ encoding empty vector or miR-122. Skin tissues were retrieved at 3, 7, and 14 days after injury for gene expression analysis, histology, immunohistochemistry, and network studies. The study explored miR-122-5p's role in macrophage-fibroblast interactions and its effect on transitioning from inflammation to proliferation in DFU healing. RESULTS High-throughput sequencing revealed miR-122-5p as crucial for DFU healing. qRT-PCR showed significant upregulation of miR-122-5p within diabetic skin among DFU individuals and mice. Western blot, along with immunohistochemical and enzyme-linked immunosorbent assay, demonstrating the upregulation of inflammatory mediators (hypoxia inducible factor-1α, matrix metalloproteinase 9, tumor necrosis factor-α) and reduced fibrosis markers (fibronectin 1, α-smooth muscle actin) by targeting vascular endothelial growth factor. Fluorescence in situ hybridization indicated its expression localized to epidermal keratinocytes and fibroblasts in diabetic mice. Immunofluorescence revealed enhanced increased presence of M1 macrophages and reduced M2 polarization, highlighting its role in inflammation. MiR-122-5p elevated inflammatory cytokine levels while suppressing fibrotic activity from fibroblasts exposed to macrophage-derived media, highlighting its pivotal role in regulating DFU healing. CONCLUSION MiR-122-5p impedes cutaneous healing of diabetic mice via enhancing inflammation and inhibiting fibrosis, offering insights into miR roles in human skin wound repair.
Collapse
Affiliation(s)
- Mei-Jie Yuan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - He-Chen Huang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong-Shuo Shi
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Ming Hu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhuo Zhao
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Qi Chen
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Jing Fan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Sun
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Bin Liu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Deng Y, Luo X, Lai W, Jiang C, Zheng Y, Pi Z, Yang Y, Li J, Zhang N, Luo X, Tong Y, Liu P, Luo F, Lin J, Lan T. Integrating Data Mining with Metabolomics to Analyze the Mechanism of the "Pearl-Borneol" Pair in Promoting Healing of Diabetic Wounds. Endocr Metab Immune Disord Drug Targets 2025; 25:66-79. [PMID: 38994612 DOI: 10.2174/0118715303295707240614060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Chronic diabetic wounds pose a significant threat to the health of diabetic patients, representing severe and enduring complications. Globally, an estimated 2.5% to 15% of the annual health budget is associated to diabetes, with diabetic wounds accounting for a substantial share. Exploring new therapeutic agents and approaches to address delayed and impaired wound healing in diabetes becomes imperative. Traditional Chinese medicine (TCM) has a long history and remarkable efficacy in treating chronic wound healing. METHODS In this study, all topically applied Proprietary Chinese Medicines (pCMs) for wound healing officially approved by China National Medical Products Administration (NMPA) were collected from the NMPA TCM database. Data mining was employed to obtain a highfrequency TCM ingredients pair, Pearl-Borneol (1:1). Subsequently, This study investigated the effect and molecular mechanism of the Pearl-Borneol pair on the healing of diabetic wounds by animal experiments and metabolomics. RESULTS The animal experiments showed that the Pearl-Borneol pair significantly accelerated diabetic wound healing, exhibiting a more potent effect than the Pearl or Borneol treatment alone. Meanwhile, the metabolomics analysis identified significant differences in metabolic profiles in wounds between the Model and Normal groups, indicating that diabetic wounds had distinct metabolic characteristics from normal wounds. Moreover, Vaseline-treated wounds exhibited similar metabolic profiles to the wounds from the Model group, suggesting that Vaseline might have a negligible impact on diabetic wound metabolism. In addition, wounds treated with Pearl, Borneol, and Pearl-Borneol pair displayed significantly different metabolic profiles from Vaseline-treated wounds, signifying the influence of these treatments on wound metabolism. Subsequent enrichment analysis of the metabolic pathway highlighted the involvement of the arginine metabolic pathway, closely associated with diabetic wounds, in the healing process under Pearl-Borneol pair treatment. Further analysis revealed elevated levels of arginine and citrulline, coupled with reduced nitric oxide (NO) in both the Model and Vaseline-treated wounds compared to normal wounds, pointing to impaired arginine utilization in diabetic wounds. Interestingly, treatment with Pearl and Pearl-Borneol pair lowered arginine and citrulline levels while increasing NO content, suggesting that these treatments may promote the catabolism of arginine to generate NO, thereby facilitating faster wound closure. Additionally, Borneol alone significantly elevated NO content in wounds, potentially due to its ability to directly reduce nitrates/nitrites to NO. Oxidative stress is a defining characteristic of impaired metabolism in diabetic wounds. Our result showed that both Pearl and Pearl-Borneol pair decreased the oxidative stress biomarker methionine sulfoxide level in diabetic wounds compared to those treated with Vaseline, indicating that Pearl alone or combined with Borneol may enhance the oxidative stress microenvironment in diabetic wounds. CONCLUSION In summary, the findings validate the effectiveness of the Pearl-Borneol pair in accelerating the healing of diabetic wounds, with effects on reducing oxidative stress, enhancing arginine metabolism, and increasing NO generation, providing a mechanistic basis for this therapeutic approach.
Collapse
Affiliation(s)
- Yasheng Deng
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xuefei Luo
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Weihui Lai
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Chunhui Jiang
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Yingwen Zheng
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Zhenyu Pi
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Yingyi Yang
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jinhua Li
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Ningle Zhang
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xiaolin Luo
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Yuanming Tong
- Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530001, Guangxi, China
| | - Peng Liu
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Nanning, 530200, Guangxi, China
| | - Fei Luo
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jiang Lin
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Nanning, 530200, Guangxi, China
| | - Taijin Lan
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Nanning, 530200, Guangxi, China
| |
Collapse
|
4
|
Ji M, Yuan Z, Ma H, Feng X, Ye C, Shi L, Chen X, Han F, Zhao C. Dandelion-shaped strontium-gallium microparticles for the hierarchical stimulation and comprehensive regulation of wound healing. Regen Biomater 2024; 11:rbae121. [PMID: 39544394 PMCID: PMC11561401 DOI: 10.1093/rb/rbae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 11/17/2024] Open
Abstract
The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.
Collapse
Affiliation(s)
- Minrui Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zaixin Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hongdong Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xian Feng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Ye
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Shi
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Fei Han
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Caichou Zhao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
6
|
Milewski MR, Schlottmann F, März V, Dieck T, Vogt PM. The Successful Treatment of Multi-Resistant Colonized Burns with Large-Area Atmospheric Cold Plasma Therapy and Dermis Substitute Matrix-A Case Report. EUROPEAN BURN JOURNAL 2024; 5:271-282. [PMID: 39599949 PMCID: PMC11545062 DOI: 10.3390/ebj5030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024]
Abstract
The treatment of severe burn injuries, which occur particularly in the context of armed conflicts, is based on a multimodal treatment concept. In addition to complex intensive care therapy, the surgical reconstruction options of plastic surgery and typical antiseptic wound treatment are the main focuses. In recent years, atmospheric cold plasma therapy (ACPT) has also become established for topical, antiseptic wound treatment and for the optimization of re-epithelialization. This case report shows a successful treatment of extensive burn injuries using dermal skin substitute matrix and topical treatment with a large-area cold plasma device to control multi-resistant pathogen colonization. This case report illustrates the importance of ACPT in burn surgery. However, larger case series and randomized controlled trials in specialized centers are needed to assess its place in future clinical practice.
Collapse
|
7
|
Kamal R, Awasthi A, Pundir M, Thakur S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol 2024; 975:176645. [PMID: 38759707 DOI: 10.1016/j.ejphar.2024.176645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-β, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/β-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Mandeep Pundir
- School of Pharmaceutical Sciences, RIMT University, Punjab, 142001, India; Chitkara College of Pharmacy, Chitkara University, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Ren W, Sun Y, Zhao L, Shi X. NLRP3 inflammasome and its role in autoimmune diseases: A promising therapeutic target. Biomed Pharmacother 2024; 175:116679. [PMID: 38701567 DOI: 10.1016/j.biopha.2024.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines IL-1β and IL-18. Numerous studies have highlighted its crucial role in the pathogenesis and development of inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid diseases, and other autoimmune diseases. Therefore, investigating the underlying mechanisms of NLRP3 in disease and targeted drug therapies holds clinical significance. This review summarizes the structure, assembly, and activation mechanisms of the NLRP3 inflammasome, focusing on its role and involvement in various autoimmune diseases. This review also identifies studies where the involvement of the NLRP3 inflammasome in the disease mechanism within the same disease appears contradictory, as well as differences in NLRP3-related gene polymorphisms among different ethnic groups. Additionally, the latest therapeutic advances in targeting the NLRP3 inflammasome for autoimmune diseases are outlined, and novel clinical perspectives are discussed. Conclusively, this review provides a consolidated source of information on the NLRP3 inflammasome and may guide future research efforts that have the potential to positively impact patient outcomes.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
9
|
Zheng H, Na H, Yao J, Su S, Han F, Li X, Chen X. 16S rRNA seq-identified Corynebacterium promotes pyroptosis to aggravate diabetic foot ulcer. BMC Infect Dis 2024; 24:366. [PMID: 38561650 PMCID: PMC10986075 DOI: 10.1186/s12879-024-09235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is one of the main chronic complications caused by diabetes, leading to amputation in severe cases. Bacterial infection affects the wound healing in DFU. METHODS DFU patients who met the criteria were selected, and the clinical data were recorded in detail. The pus exudate from the patient's foot wound and venous blood were collected for biochemical analysis. The distribution of bacterial flora in pus exudates of patients was analyzed by 16S rRNA sequencing, and the correlation between DFU and pathogenic variables, pyroptosis and immunity was analyzed by statistical analysis. Then, the effects of key bacteria on the inflammation, proliferation, apoptosis, and pyroptosis of polymorphonuclear leukocytes were investigated by ELISA, CCK-8, flow cytometry, RT-qPCR and western blot. RESULTS Clinical data analysis showed that Wagner score was positively correlated with the level of inflammatory factors, and there was high CD3+, CD4+, and low CD8+ levels in DFU patients with high Wagner score. Through alpha, beta diversity analysis and species composition analysis, Corynebacterium accounted for a large proportion in DFU. Logistics regression model and Person correlation analysis demonstrated that mixed bacterial infections could aggravate foot ulcer, and the number of bacteria was closely related to inflammatory factors PCT, PRT, immune cells CD8+, and pyroptosis-related proteins GSDMD and NLRP3. Through in vitro experiments, Corynebacterium inhibited cell proliferation, promoted inflammation (TNF-α, PCT, CRP), apoptosis and pyroptosis (IL-1β, LDH, IL-18, GSDMD, NLRP3, and caspase-3). CONCLUSION Mixed bacterial infections exacerbate DFU progression with a high predominance of Corynebacterium, and Corynebacterium promotes inflammation, apoptosis and pyroptosis to inhibit DFU healing.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Han Na
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Jiangling Yao
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Sheng Su
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Feng Han
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Xiaoyan Li
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Xiaopan Chen
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China.
| |
Collapse
|