1
|
Okdeh N, Mahfouz G, Harb J, Sabatier JM, Roufayel R, Gazo Hanna E, Kovacic H, Fajloun Z. Protective Role and Functional Engineering of Neuropeptides in Depression and Anxiety: An Overview. Bioengineering (Basel) 2023; 10:258. [PMID: 36829752 PMCID: PMC9952193 DOI: 10.3390/bioengineering10020258] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Behavioral disorders, such as anxiety and depression, are prevalent globally and touch children and adults on a regular basis. Therefore, it is critical to comprehend how these disorders are affected. It has been demonstrated that neuropeptides can influence behavior, emotional reactions, and behavioral disorders. This review highlights the majority of the findings demonstrating neuropeptides' behavioral role and functional engineering in depression and anxiety. Gut-brain peptides, hypothalamic releasing hormone peptides, opioid peptides, and pituitary hormone peptides are the four major groups of neuropeptides discussed. Some neuropeptides appear to promote depression and anxiety-like symptoms, whereas others seem to reduce it, all depending on the receptors they are acting on and on the brain region they are localized in. The data supplied here are an excellent starting point for future therapy interventions aimed at treating anxiety and depression.
Collapse
Affiliation(s)
- Nathalie Okdeh
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Georges Mahfouz
- Department of Psychology, Faculty of Arts and Sciences, Beirut Campus, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, Dekouene Campus, University of Balamand, Sin El Fil 55251, Lebanon
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Hervé Kovacic
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| |
Collapse
|
2
|
Vacca M, Fernandes M, Spanetta M, Placidi F, Izzi F, Lombardo C, Mercuri NB, Liguori C. Depressive symptoms in patients with epilepsy and clinically associated features in a single tertiary center. Neurol Sci 2021; 43:1965-1974. [PMID: 34528181 PMCID: PMC8860796 DOI: 10.1007/s10072-021-05589-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Although depressive symptoms are the most common psychiatric comorbidity in epilepsy, they remain underestimated and untreated in a large proportion of patients. The purpose of this study was to evaluate depression severity and related clinical features in people with epilepsy using a well-reliable self-report index of mood, the Beck Depression Inventory-II (BDI-II). One-hundred seventeen adult patients with epilepsy were recruited from a tertiary epilepsy center and completed the BDI-II. A single-item analysis of the 21 questions of the BDI-II was computed and differences between women and men in each depressive symptom were evaluated. Correlation and regression analyses were used to identify clinical features associated with the severity of depression. Results showed gender differences in some items, with women reporting overall higher depression severity than men. The most common symptoms regarded domains of sleeping patterns, tiredness, and loss of energy. Regression evidence suggested that being female, having an epilepsy duration < 10 years, as well as being treated with psychotropic drugs and reporting generalized seizure, were associated with higher depression severity. Despite its cross-sectional nature, this study reinforces the importance of investigating and possibly treating depressive symptoms in adult patients with epilepsy, since they negatively impact well-being, daytime activities, and sleep. Further studies identifying pharmacological and non-pharmacological treatments for depression in epilepsy need to be planned.
Collapse
Affiliation(s)
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Francesca Izzi
- Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.,IRCSS Santa Lucia Foudantion, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy. .,Epilepsy Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Kohek SRB, Foresti ML, Blanco MM, Cavarsan CF, da Silva CS, Mello LE. Anxious Profile Influences Behavioral and Immunohistological Findings in the Pilocarpine Model of Epilepsy. Front Pharmacol 2021; 12:640715. [PMID: 34025410 PMCID: PMC8132119 DOI: 10.3389/fphar.2021.640715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Anxiety and epilepsy have a complex bidirectional relationship, where a depressive/anxious condition is a factor that can trigger seizures which in turn can aggravate the depressive/anxious condition. In addition, brain structures such as the hippocampus and amygdala might have a critical relevance in both epilepsy and anxiety. The aim of the present work was to investigate the influence of different anxious profiles to epileptogenesis. Initially, animals were screened through the elevated plus-maze anxiety test, and then seizure development was evaluated using the pilocarpine model of epilepsy. There were no differences in the susceptibility to status epilepticus, mortality rate or frequency of spontaneous recurrent seizures between animals characterized as anxious as compared to the non-anxious animals. Next, we evaluated immunohistological patterns related to seizures and anxiety in various related brain areas. Despite a decrease in the density of neuropeptide Y and parvalbumin expression in epileptic animals, those presenting greater neuropeptide Y immunoreactivity in various brain regions, also showed higher spontaneous recurrent seizures frequency. Differences on the anxious profile showed to interfere with some of these findings in some regions. In addition, animals that were injected with pilocarpine, but did not develop status epilepticus, had behavioral and neuroanatomical alterations as compared to control animals, indicating its importance as an additional tool for investigating the heterogeneity of the epileptogenic response after an initial insult. This study allowed to better understand the association between anxiety and temporal lobe epilepsy and might allow for therapeutic targets to be developed to minimize the negative impacts associated with it.
Collapse
Affiliation(s)
| | | | | | - Clarissa Fantin Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | | | - Luiz E Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Helmstaedter C, Hansen N, Leelaarporn P, Schwing K, Oender D, Widman G, Racz A, Surges R, Becker A, Witt JA. Specific B- and T-cell populations are associated with cognition in patients with epilepsy and antibody positive and negative suspected limbic encephalitis. J Neurol 2021; 268:455-466. [PMID: 32816110 PMCID: PMC7880943 DOI: 10.1007/s00415-020-10158-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neuropsychological impairments are major symptoms of autoimmune limbic encephalitis (LE) epilepsy patients. In LE epilepsy patients with an autoimmune response against intracellular antigens as well as in antibody-negative patients, the antibody findings and magnetic resonance imaging pathology correspond poorly to the clinical features. Here, we evaluated whether T- and B-cells are linked to cognitive impairment in these groups. METHODS In this cross-sectional, observational, case-controlled study, we evaluated 106 patients with adult-onset epilepsies with a suspected autoimmune etiology. We assessed verbal and visual memory, executive function, and mood in relation to the presence or absence of known auto-antibodies, and regarding T- and B-cell activity as indicated by flow cytometry (fluorescence-activated cell sorting = FACS, peripheral blood = PB and cerebrospinal fluid = CSF). RESULTS 56% of the patients were antibody-negative. In the other patients, auto-antibodies were directed against intracellular antigens (GAD65, paraneoplastic: 38%), or cellular surface antigens (LGI1/CASPR2/NMDA-R: 6%). Excluding LGI1/CASPR2/NMDA-R, the groups with and without antibodies did not differ in disease features, cognition, or mood. CD4+ T-cells and CD8+ T-cells in blood and CD4+ T-cells in CSF were prominent in the auto-antibody positive group. Regression analyses indicated the role education, drug load, amygdala and/or hippocampal pathology, and CD4+ T-cells play in verbal memory and executive function. Depressed mood revealed no relation to flow cytometry results. CONCLUSION Our results indicate a link between T- and B-cell activity and cognition in epilepsy patients with suspected limbic encephalitis, thus suggesting that flow cytometry results can provide an understanding of cognitive impairment in LE patients with autoantibodies against intracellular antigens.
Collapse
Affiliation(s)
- Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Niels Hansen
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Pitshaporn Leelaarporn
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kerstin Schwing
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany
| | - Demet Oender
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany
| | - Guido Widman
- SEIN Epilepsy Center, Hemsteede, The Netherlands
| | - Attila Racz
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany
| | - Albert Becker
- Department of Neuropathology, University Hospital, Bonn, Germany
| | - Juri-Alexander Witt
- Department of Epileptology, University Hospital Bonn, Building 83 Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
5
|
Yilmazer-Hanke D, O'Loughlin E, McDermott K. Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy. J Neurosci Res 2015; 94:486-503. [DOI: 10.1002/jnr.23689] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Deniz Yilmazer-Hanke
- Department of Biomedical Sciences, School of Medicine; Creighton University; Omaha Nebraska
- Department of Anatomy and Neuroscience; University College; Cork Ireland
| | - Elaine O'Loughlin
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Ann Romney Centre for Neurologic Diseases, Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Kieran McDermott
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Graduate Entry Medical School; University of Limerick; Limerick Ireland
| |
Collapse
|
6
|
Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon's horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy Behav 2014; 37:175-83. [PMID: 25050777 DOI: 10.1016/j.yebeh.2014.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022]
Abstract
Damage to the amygdala is often linked to Ammon's horn sclerosis (AHS) in surgical specimens of patients suffering from temporal lobe epilepsy (TLE). Moreover, amygdalar pathology is thought to contribute to the development of anxiety symptoms frequently found in TLE. The neuropeptide Y (NPY) Y1 receptor is critical in the regulation of anxiety-related behavior and epileptiform activity in TLE. Therefore, intrahippocampal kainate (KA) injection was performed to induce AHS-associated TLE and to investigate behavioral and cytoarchitectural changes that occur in the amygdala related to Y1 receptor expression. Status epilepticus was induced by intrahippocampal KA injection in C57BL/6J mice. Anxiety-like behavior was assessed using the elevated plus maze (EPM). Pathology of hippocampus and amygdala (volume loss and gliosis) was examined in KA-injected and saline-injected controls. Y1 receptor expression was measured using immunohistochemistry and ELISA. Animal injected with KA showed increased anxiety-like behaviors and reduced risk assessment in the EPM test compared with saline-injected controls. In the ipsilateral hippocampus of KA-injected animals, CA1 ablation, granule cell dispersion, and volume reduction were accompanied by astrogliosis indicating the development of AHS. In the amygdala, a significant decrease in the volume of nuclei and numbers of neurons was observed in the ipsilateral lateral, basolateral, and central amygdalar nuclei, which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor-expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsilateral and contralateral granule cell layer of the dentate gyrus, and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. Our results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Moreover, intrahippocampal KA injection can induce amygdalar damage suggesting that AHS-associated amygdala damage may contribute to behavioral alterations seen in patients with TLE.
Collapse
|
7
|
Doucet GE, Skidmore C, Sharan AD, Sperling MR, Tracy JI. Functional connectivity abnormalities vary by amygdala subdivision and are associated with psychiatric symptoms in unilateral temporal epilepsy. Brain Cogn 2013; 83:171-82. [PMID: 24036129 DOI: 10.1016/j.bandc.2013.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/11/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
The amygdala has been described as a structure affected by mesial temporal lobe epilepsy (MTLE). Indeed, it is suggested that amygdala abnormalities are related to the co-morbid depression and anxiety reported in MTLE. In this context, we investigated the relation between functional connectivity (FC) emerging from this structure in fMRI and depression and anxiety levels reported in MTLE patients. We focused on resting-state BOLD activity and evaluated whether FC differences emerge from each of three amygdala subdivisions (laterobasal, centromedial and superficial) in left and right MTLE groups, compared with healthy controls. Results revealed significant differences between patient groups and controls. Specifically, the left MTLE group showed abnormal FC for the left-sided seeds only. Furthermore, regardless of the seed, we observed more reliable differences between the right MTLE group and controls. Further analysis of these results revealed correlations between these impaired connectivities and psychiatric symptoms in both MTLE groups. Opposite relations, however, were highlighted: the more depressed or anxious the right MTLE patients, the closer their FC values approached controls; whereas the less anxious the left MTLE patients, the closer their FC values were normative. These results highlight how MTLE alter FC emerging from the limbic system. Overall, our data demonstrate that right TLE has a more maladaptive impact on emotion-related networks, in ways specific to the amygdala region, and the emotion symptom involved, than left TLE.
Collapse
Affiliation(s)
- Gaëlle E Doucet
- Department of Neurology, Thomas Jefferson University, United States; Department of Neurosurgery, Thomas Jefferson University, United States
| | | | | | | | | |
Collapse
|
8
|
Cardamone L, Salzberg MR, O'Brien TJ, Jones NC. Antidepressant therapy in epilepsy: can treating the comorbidities affect the underlying disorder? Br J Pharmacol 2013; 168:1531-54. [PMID: 23146067 PMCID: PMC3605864 DOI: 10.1111/bph.12052] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022] Open
Abstract
There is a high incidence of psychiatric comorbidity in people with epilepsy (PWE), particularly depression. The manifold adverse consequences of comorbid depression have been more clearly mapped in recent years. Accordingly, considerable efforts have been made to improve detection and diagnosis, with the result that many PWE are treated with antidepressant drugs, medications with the potential to influence both epilepsy and depression. Exposure to older generations of antidepressants (notably tricyclic antidepressants and bupropion) can increase seizure frequency. However, a growing body of evidence suggests that newer ('second generation') antidepressants, such as selective serotonin reuptake inhibitors or serotonin-noradrenaline reuptake inhibitors, have markedly less effect on excitability and may lead to improvements in epilepsy severity. Although a great deal is known about how antidepressants affect excitability on short time scales in experimental models, little is known about the effects of chronic antidepressant exposure on the underlying processes subsumed under the term 'epileptogenesis': the progressive neurobiological processes by which the non-epileptic brain changes so that it generates spontaneous, recurrent seizures. This paper reviews the literature concerning the influences of antidepressants in PWE and in animal models. The second section describes neurobiological mechanisms implicated in both antidepressant actions and in epileptogenesis, highlighting potential substrates that may mediate any effects of antidepressants on the development and progression of epilepsy. Although much indirect evidence suggests the overall clinical effects of antidepressants on epilepsy itself are beneficial, there are reasons for caution and the need for further research, discussed in the concluding section.
Collapse
Affiliation(s)
- L Cardamone
- Department of Medicine (RMH), University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
9
|
dos Santos VV, Santos DB, Lach G, Rodrigues ALS, Farina M, De Lima TCM, Prediger RD. Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ(1-40)) administration in mice. Behav Brain Res 2013; 244:107-15. [PMID: 23396168 DOI: 10.1016/j.bbr.2013.01.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022]
Abstract
Neuropeptide Y (NPY) is a 36-amino acid peptide widely distributed in the central nervous system (CNS) that has been associated with the modulation of several functions including food intake, learning and memory, mood and neuroprotection. There is great interest in understanding the role of NPY in the deleterious effects induced by the central accumulation of amyloid-β (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD). Herein, we evaluated the effects of a single intracerebroventricular (i.c.v.) administration of NPY (0.0234 μmol/μL) 15 min prior to the i.c.v. injection of aggregated Aβ1-40 peptide (400 pmol/mouse) in behavioral and neurochemical parameters related to oxidative stress in mice. Pretreatment with NPY prevented Aβ1-40-induced depressive-like responses and spatial memory impairments evaluated in the tail suspension and object location tasks, respectively. The protective effects of NPY on spatial memory of Aβ1-40-treated mice were abolished by the pretreatment with the selective Y2 receptor antagonist BIIE0246. On the other hand, the administration of NPY and Aβ1-40 did not alter the performance of the animals in the elevated plus-maze and open field arena, indicating lack of effects on anxiety state and locomotor function. Although Aβ1-40 infusion did not change hippocampal and cortical glutathione peroxidase (GPx) activity and glutathione (GSH) levels, Aβ1-40-infused animals showed an increased lipid peroxidation in hippocampus and prefrontal cortex that were blunted by NPY administration. These findings indicate that central administration of NPY prevents Aβ1-40-induced depressive-like behavior and spatial memory deficits in mice and that this response is mediated, at least in part, by the activation of Y2 receptors and prevention of oxidative stress.
Collapse
Affiliation(s)
- Vanessa V dos Santos
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Florianópolis-SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Helmstaedter C, Witt JA. Multifactorial etiology of interictal behavior in frontal and temporal lobe epilepsy. Epilepsia 2012; 53:1765-73. [DOI: 10.1111/j.1528-1167.2012.03602.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Martinez JM, Garakani A, Yehuda R, Gorman JM. Proinflammatory and "resiliency" proteins in the CSF of patients with major depression. Depress Anxiety 2012; 29:32-8. [PMID: 21898706 DOI: 10.1002/da.20876] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND A number of studies have shown that elevated levels of inflammatory cytokines may promote depression and suicidal ideation and that neuroprotective peptides may decrease the response to stress and depression. In this study, cerebrospinal fluid (CSF) levels of three inflammatory cytokines (IL-1, IL-6, and tumor necrosis factor α (TNFα)) and two putative "resiliency" neuropeptides (brain-derived neurotrophic factor (BDNF) and neuropeptide Y (NPY)) were compared between patients with depression and healthy controls. METHODS Eighteen patients with major depression and 25 healthy controls underwent a lumbar puncture; CSF samples were withdrawn and assayed for IL-1, IL-6, TNFα, BDNF, and NPY levels. Patients with depression were then entered into an 8-week treatment protocol and had repeated lumbar puncture procedures post-treatment. RESULTS Contrary to prediction, we found that at baseline depressed patients had higher CSF NPY concentration compared to the normal comparison group. Within the depressed patients, we found several statistically significant correlations between elevated CSF cytokine levels and clinical severity. CONCLUSION Despite the small sample size, given the challenges in obtaining CSF from patients with depression these data are of interest in confirming some aspects of the inflammatory hypothesis of depression.
Collapse
Affiliation(s)
- Jose M Martinez
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
12
|
Helmstaedter C, Witt JA. Clinical neuropsychology in epilepsy: theoretical and practical issues. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:437-459. [PMID: 22938988 DOI: 10.1016/b978-0-444-52898-8.00036-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
13
|
Morales-Medina JC, Dumont Y, Quirion R. A possible role of neuropeptide Y in depression and stress. Brain Res 2009; 1314:194-205. [PMID: 19782662 DOI: 10.1016/j.brainres.2009.09.077] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/14/2009] [Accepted: 09/19/2009] [Indexed: 11/15/2022]
Abstract
Neuropeptide Y (NPY) mediates its physiological effects through at least four receptors known as Y(1), Y(2), Y(4), and Y(5). This peptide is one of the most abundant peptides in the central nervous system and is highly conserved throughout evolution. The most abundant receptors of the NPY family, the Y(1) and Y(2) receptors, are densely expressed in the cortex, hippocampus, and amygdala. These brain regions are particularly associated with mood disorders, stress responses, and memory processing. With this in mind, researchers suggested the involvement of NPY as well as the Y(1) and Y(2) receptors in affective disorders. Earlier studies showed that NPY and the Y(1) and Y(2) receptors mediate some aspects of depression-like disorders and stress responses in rodents. Recent research also suggests the involvement of the Y(4) and Y(5) receptors in emotion-related processes in rodents. In addition, human studies have consistently suggested a role for NPY in stress responses, whereas conflicting data have been obtained in relation to the role of NPY in depression-related illnesses. However, novel evidence from polymorphisms in the prepro-NPY gene has shed new light on the potential clinical relevance of NPY in depression. In this article, we review the literature from both animal and human studies regarding the contribution of NPY and its receptors in depression and stress.
Collapse
|