1
|
Guillaumin MCC, Viskaitis P, Bracey E, Burdakov D, Peleg-Raibstein D. Disentangling the role of NAc D1 and D2 cells in hedonic eating. Mol Psychiatry 2023; 28:3531-3547. [PMID: 37402855 PMCID: PMC10618099 DOI: 10.1038/s41380-023-02131-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
Overeating is driven by both the hedonic component ('liking') of food, and the motivation ('wanting') to eat it. The nucleus accumbens (NAc) is a key brain center implicated in these processes, but how distinct NAc cell populations encode 'liking' and 'wanting' to shape overconsumption remains unclear. Here, we probed the roles of NAc D1 and D2 cells in these processes using cell-specific recording and optogenetic manipulation in diverse behavioral paradigms that disentangle reward traits of 'liking' and 'wanting' related to food choice and overeating in healthy mice. Medial NAc shell D2 cells encoded experience-dependent development of 'liking', while D1 cells encoded innate 'liking' during the first food taste. Optogenetic control confirmed causal links of D1 and D2 cells to these aspects of 'liking'. In relation to 'wanting', D1 and D2 cells encoded and promoted distinct aspects of food approach: D1 cells interpreted food cues while D2 cells also sustained food-visit-length that facilitates consumption. Finally, at the level of food choice, D1, but not D2, cell activity was sufficient to switch food preference, programming subsequent long-lasting overconsumption. By revealing complementary roles of D1 and D2 cells in consumption, these findings assign neural bases to 'liking' and 'wanting' in a unifying framework of D1 and D2 cell activity.
Collapse
Affiliation(s)
- Mathilde C C Guillaumin
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Paulius Viskaitis
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Eva Bracey
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Denis Burdakov
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland.
| |
Collapse
|
2
|
Zetterström TSC, Quansah E, Grootveld M. Effects of Methylphenidate on the Dopamine Transporter and Beyond. Curr Top Behav Neurosci 2022; 57:127-157. [PMID: 35507284 DOI: 10.1007/7854_2022_333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The dopamine transporter (DAT) is the main target of methylphenidate (MPH), which remains the number one drug prescribed worldwide for the treatment of Attention-Deficit Hyperactivity Disorder (ADHD). In addition, abnormalities of the DAT have been widely associated with ADHD. Based on clinical and preclinical studies, the direction of DAT abnormalities in ADHD are, however, still unclear. Moreover, chronic treatment of MPH has been shown to increase brain DAT expression in both animals and ADHD patients, suggesting that findings of overexpressed levels of DAT in ADHD patients are possibly attributable to the effects of long-term MPH treatment rather than the pathology of the condition itself. In this chapter, we will discuss some of the effects exerted by MPH, which are related to its actions on catecholamine protein targets and brain metabolites, together with genes and proteins mediating neuronal plasticity. For this purpose, we present data from biochemical, proton nuclear magnetic resonance spectroscopy (1H-NMR) and gene/protein expression studies. Overall, results of the studies discussed in this chapter show that MPH has a complex biological/pharmacological action well beyond the DAT.
Collapse
Affiliation(s)
- Tyra S C Zetterström
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| | - Emmanuel Quansah
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Martin Grootveld
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
3
|
Gu SM, Cha HJ, Seo SW, Hong JT, Yun J. Dopamine D1 receptor antagonist reduces stimulant-induced conditioned place preferences and dopamine receptor supersensitivity. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:131-138. [PMID: 31372696 DOI: 10.1007/s00210-019-01694-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/12/2019] [Indexed: 01/24/2023]
Abstract
Repeated administration of stimulants induces conditioned place preference (CPP). Dopamine receptor supersensitivity is developed in stimulant-induced CPP animals; however, dopamine receptor subtypes associated with the development of supersensitivity in CPP animals are largely unknown. The present preclinical study aimed to examine whether dopamine D1 or D2 receptor antagonists exert inhibitory effects on stimulant-induced psychological behaviors. Additionally, the authors aimed to elucidate the role of dopamine receptor supersensitivity on the development of reward-related behavior. Sprague Dawley rats subjected to methamphetamine- and cocaine-induced CPP tests were treated with dopamine D1 (SCH23390) or D2 (sulpiride) receptor antagonists. Following the CPP experiment, rats were challenged with apomorphine (dopamine receptor agonist), and locomotor activity was measured. Methamphetamine- and cocaine-induced CPP was reduced with the administration of SCH23390, but not sulpiride. In addition, the apomorphine challenge evoked an increase in locomotor activity in stimulant-pre-treated rats, reflecting dopamine receptor supersensitivity. SCH23390 pre-treatment inhibited the development of dopamine receptor supersensitivity, while sulpiride demonstrated no inhibitory effects. These results suggest that the dopamine D1 receptor antagonist SCH23390 inhibits the development of dopamine receptor supersensitivity which is associated with the development of CPP.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hye Jin Cha
- National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju, Chungbuk, 28159, Republic of Korea
| | - So Woon Seo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
4
|
Chronic methylphenidate preferentially alters catecholamine protein targets in the parietal cortex and ventral striatum. Neurochem Int 2019; 124:193-199. [DOI: 10.1016/j.neuint.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
|
5
|
Montesinos J, Pascual M, Rodríguez-Arias M, Miñarro J, Guerri C. Involvement of TLR4 in the long-term epigenetic changes, rewarding and anxiety effects induced by intermittent ethanol treatment in adolescence. Brain Behav Immun 2016; 53:159-171. [PMID: 26686767 DOI: 10.1016/j.bbi.2015.12.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
Studies in humans and experimental animals have demonstrated the vulnerability of the adolescent brain to actions of ethanol and the long-term consequences of binge drinking, including the behavioral and cognitive deficits that result from alcohol neurotoxicity, and increased risk to alcohol abuse and dependence. Although the mechanisms that participate in these effects are largely unknown, we have shown that ethanol by activating innate immune receptors, toll-like receptor 4 (TLR4), induces neuroinflammation, impairs myelin proteins and causes cognitive dysfunctions in adolescent mice. Since neuroimmune signaling is also involved in alcohol abuse, the aim of this study was to assess whether ethanol treatment in adolescence promotes the long-term synaptic and molecular events associated with alcohol abuse and addiction. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3g/kg) for 2 weeks, we showed that binge-like ethanol treatment in adolescent mice promotes short- and long-term alterations in synaptic plasticity and epigenetic changes in the promoter region of bdnf and fosb, which increased their expression in the mPFC of young adult animals. These molecular events were associated with long-term rewarding and anxiogenic-related behavioral effects, along with increased alcohol preference. Our results further showed the participation of neuroimmune system activation and the TLR4 signaling response since deficient mice in TLR4 (TLR4-KO) are protected against molecular and behavioral alterations of ethanol in the adolescent brain. Our results highlight a new role of the neuroimmune function and open up new avenues to develop pharmacological treatments that can normalize the immune signaling responsible for long-term effects in adolescence, including alcohol abuse and related disorders.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain.
| |
Collapse
|