1
|
Comprehensive Analysis of GABA A-A1R Developmental Alterations in Rett Syndrome: Setting the Focus for Therapeutic Targets in the Time Frame of the Disease. Int J Mol Sci 2020; 21:ijms21020518. [PMID: 31947619 PMCID: PMC7014188 DOI: 10.3390/ijms21020518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023] Open
Abstract
Rett syndrome, a serious neurodevelopmental disorder, has been associated with an altered expression of different synaptic-related proteins and aberrant glutamatergic and γ-aminobutyric acid (GABA)ergic neurotransmission. Despite its severity, it lacks a therapeutic option. Through this work we aimed to define the relationship between MeCP2 and GABAA.-A1 receptor expression, emphasizing the time dependence of such relationship. For this, we analyzed the expression of the ionotropic receptor subunit in different MeCP2 gene-dosage and developmental conditions, in cells lines, and in primary cultured neurons, as well as in different developmental stages of a Rett mouse model. Further, RNAseq and systems biology analysis was performed from post-mortem brain biopsies of Rett patients. We observed that the modulation of the MeCP2 expression in cellular models (both Neuro2a (N2A) cells and primary neuronal cultures) revealed a MeCP2 positive effect on the GABAA.-A1 receptor subunit expression, which did not occur in other proteins such as KCC2 (Potassium-chloride channel, member 5). In the Mecp2+/− mouse brain, both the KCC2 and GABA subunits expression were developmentally regulated, with a decreased expression during the pre-symptomatic stage, while the expression was variable in the adult symptomatic mice. Finally, the expression of the gamma-aminobutyric acid (GABA) receptor-related synaptic proteins from the postmortem brain biopsies of two Rett patients was evaluated, specifically revealing the GABA A1R subunit overexpression. The identification of the molecular changes along with the Rett syndrome prodromic stages strongly endorses the importance of time frame when addressing this disease, supporting the need for a neurotransmission-targeted early therapeutic intervention.
Collapse
|
2
|
Leiva R, Phillips MB, Turcu AL, Gratacòs-Batlle E, León-García L, Sureda FX, Soto D, Johnson JW, Vázquez S. Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. ACS Chem Neurosci 2018; 9:2722-2730. [PMID: 29767953 DOI: 10.1021/acschemneuro.8b00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This work reports the synthesis and pharmacological and electrophysiological evaluation of new N-methyl-d-aspartic acid receptor (NMDAR) channel blocking antagonists featuring polycyclic scaffolds. Changes in the chemical structure modulate the potency and voltage dependence of inhibition. Two of the new antagonists display properties comparable to those of memantine, a clinically approved NMDAR antagonist.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Matthew B. Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Lara León-García
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Francesc X. Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - David Soto
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Kölker S. Metabolism of amino acid neurotransmitters: the synaptic disorder underlying inherited metabolic diseases. J Inherit Metab Dis 2018; 41:1055-1063. [PMID: 29869166 DOI: 10.1007/s10545-018-0201-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Amino acids are involved in various metabolic pathways and some of them also act as neurotransmitters. Since biosynthesis of L-glutamate and γ-aminobutyric acid (GABA) requires 2-oxoglutarate while 3-phosphoglycerate is the precursor of L-glycine and D-serine, evolutionary selection of these amino acid neurotransmitters might have been driven by their capacity to provide important information about the glycolytic pathway and Krebs cycle. Synthesis and recycling of amino acid neurotransmitters as well as composition and function of their receptors are often compromised in inherited metabolic diseases. For instance, increased plasma L-phenylalanine concentrations impair cerebral biosynthesis of protein and bioamines in phenylketonuria, while elevated cerebral L-phenylalanine directly acts via ionotropic glutamate receptors. In succinic semialdehyde dehydrogenase deficiency, the neurotransmitter GABA and neuromodulatory γ-hydroxybutyric acid are elevated. Chronic hyperGABAergic state results in progressive downregulation of GABAA and GABAB receptors and impaired mitophagy. In glycine encephalopathy, the neurological phenotype is precipitated by L-glycine acting both via cortical NMDA receptors and glycine receptors in spinal cord and brain stem neurons. Serine deficiency syndromes are biochemically characterized by decreased biosynthesis of L-serine, an important neurotrophic factor, and the neurotransmitters D-serine and L-glycine. Supplementation with L-serine and L-glycine has a positive effect on seizure frequency and spasticity, while neurocognitive development can only be improved if treatment starts in utero or immediately postnatally. With novel techniques, the study of synaptic dysfunction in inherited metabolic diseases has become an emerging research field. More and better therapies are needed for these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Kyriakopoulos P, McNiven V, Carter MT, Humphreys P, Dyment D, Fantaneanu TA. Atypical Rett Syndrome and Intractable Epilepsy With Novel GRIN2B Mutation. Child Neurol Open 2018; 5:2329048X18787946. [PMID: 30151416 PMCID: PMC6108011 DOI: 10.1177/2329048x18787946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Paulina Kyriakopoulos
- Division of Neurology, The Ottawa Hospital Civic Campus, Ottawa, Ontario, Canada.,co-authors who contributed equally
| | - Vanda McNiven
- Division of Clinical Genetics and Metabolics, SickKids, Toronto, Ontario, Canada.,co-authors who contributed equally
| | - Melissa T Carter
- Department of Genetics, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Peter Humphreys
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - David Dyment
- Department of Genetics, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Tadeu A Fantaneanu
- Division of Neurology, The Ottawa Hospital Civic Campus, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
XiangWei W, Jiang Y, Yuan H. De Novo Mutations and Rare Variants Occurring in NMDA Receptors. CURRENT OPINION IN PHYSIOLOGY 2017; 2:27-35. [PMID: 29756080 DOI: 10.1016/j.cophys.2017.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A significant number of variants/mutations in the N-methyl-D-aspartate glutamatergic receptor (NMDAR) gene family (GRIN) have been identified along with stunning advances in the technologies of next generation of whole-exome sequencing. Mutations in human GRIN genes are distributed throughout the entire gene, from amino terminal domain to C-terminal domain, in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention deficit hyperactivity disorder, and schizophrenia. Analyzing the currently available human genetic variations illustrates the genetic variation intolerance to missense mutations differs significantly among domains within the GRIN genes. Functional analyses of these mutations and their pharmacological profiles provide the first opportunity to understand the molecular mechanism and targeted therapeutic strategies for these neurological and psychiatric disorders, as well as unfold novel clues to channel function.
Collapse
Affiliation(s)
- Wenshu XiangWei
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Vidal S, Brandi N, Pacheco P, Gerotina E, Blasco L, Trotta JR, Derdak S, Del Mar O'Callaghan M, Garcia-Cazorla À, Pineda M, Armstrong J. The utility of Next Generation Sequencing for molecular diagnostics in Rett syndrome. Sci Rep 2017; 7:12288. [PMID: 28947817 PMCID: PMC5613000 DOI: 10.1038/s41598-017-11620-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that almost exclusively affects girls and is totally disabling. Three genes have been identified that cause RTT: MECP2, CDKL5 and FOXG1. However, the etiology of some of RTT patients still remains unknown. Recently, next generation sequencing (NGS) has promoted genetic diagnoses because of the quickness and affordability of the method. To evaluate the usefulness of NGS in genetic diagnosis, we present the genetic study of RTT-like patients using different techniques based on this technology. We studied 1577 patients with RTT-like clinical diagnoses and reviewed patients who were previously studied and thought to have RTT genes by Sanger sequencing. Genetically, 477 of 1577 patients with a RTT-like suspicion have been diagnosed. Positive results were found in 30% by Sanger sequencing, 23% with a custom panel, 24% with a commercial panel and 32% with whole exome sequencing. A genetic study using NGS allows the study of a larger number of genes associated with RTT-like symptoms simultaneously, providing genetic study of a wider group of patients as well as significantly reducing the response time and cost of the study.
Collapse
Affiliation(s)
- Silvia Vidal
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Núria Brandi
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Paola Pacheco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Edgar Gerotina
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laura Blasco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jean-Rémi Trotta
- Centro Nacional de Análisis Genómica (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sophia Derdak
- Centro Nacional de Análisis Genómica (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria Del Mar O'Callaghan
- Neurology Service, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Àngels Garcia-Cazorla
- Neurology Service, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Pineda
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Judith Armstrong
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain.
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|