1
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
2
|
Waldherr SM, Han M, Saxton AD, Vadset TA, McMillan PJ, Wheeler JM, Liachko NF, Kraemer BC. Endoplasmic reticulum unfolded protein response transcriptional targets of XBP-1s mediate rescue from tauopathy. Commun Biol 2024; 7:903. [PMID: 39060347 PMCID: PMC11282107 DOI: 10.1038/s42003-024-06570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Pathological tau disrupts protein homeostasis (proteostasis) within neurons in Alzheimer's disease (AD) and related disorders. We previously showed constitutive activation of the endoplasmic reticulum unfolded protein response (UPRER) transcription factor XBP-1s rescues tauopathy-related proteostatic disruption in a tau transgenic Caenorhabditis elegans (C. elegans) model of human tauopathy. XBP-1s promotes clearance of pathological tau, and loss of function of the ATF-6 branch of the UPRER prevents XBP-1s rescue of tauopathy in C. elegans. We conducted transcriptomic analysis of tau transgenic and xbp-1s transgenic C. elegans and found 116 putative target genes significantly upregulated by constitutively active XBP-1s. Among these were five candidate XBP-1s target genes with human orthologs and a previously known association with ATF6 (csp-1, dnj-28, hsp-4, ckb-2, and lipl-3). We examined the functional involvement of these targets in XBP-1s-mediated tauopathy suppression and found loss of function in any one of these genes completely disrupts XBP-1s suppression of tauopathy. Further, we demonstrate upregulation of HSP-4, C. elegans BiP, partially rescues tauopathy independent of other changes in the transcriptional network. Understanding how the UPRER modulates pathological tau accumulation will inform neurodegenerative disease mechanisms and direct further study in mammalian systems with the long-term goal of identifying therapeutic targets in human tauopathies.
Collapse
Affiliation(s)
- Sarah M Waldherr
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Marina Han
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Taylor A Vadset
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA
| | - Pamela J McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Jeanna M Wheeler
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Lee HJ, Nam J, Hwang JW, Park JH, Jeong YJ, Jang JY, Kim SJ, Jo AR, Hoe HS. L-DOPA regulates neuroinflammation and Aβ pathology through NEP and ADAM17 in a mouse model of AD. Mol Brain 2024; 17:21. [PMID: 38685105 PMCID: PMC11059733 DOI: 10.1186/s13041-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aβ/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aβ pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aβ plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aβ pathology but not tau pathology in this mouse model of AD.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
| | - JinHan Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
| | - Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Ji-Yeong Jang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Su-Jeong Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
| | - A-Ran Jo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41068, Korea.
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea.
| |
Collapse
|
4
|
Han M, Saxton A, Currey H, Waldherr SM, Liachko NF, Kraemer BC. Transgenic Dendra2::tau expression allows in vivo monitoring of tau proteostasis in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050473. [PMID: 38469687 PMCID: PMC10985736 DOI: 10.1242/dmm.050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Protein homeostasis is perturbed in aging-related neurodegenerative diseases called tauopathies, which are pathologically characterized by aggregation of the microtubule-associated protein tau (encoded by the human MAPT gene). Transgenic Caenorhabditis elegans serve as a powerful model organism to study tauopathy disease mechanisms, but moderating transgenic expression level has proven problematic. To study neuronal tau proteostasis, we generated a suite of transgenic strains expressing low, medium or high levels of Dendra2::tau fusion proteins by comparing integrated multicopy transgene arrays with single-copy safe-harbor locus strains generated by recombinase-mediated cassette exchange. Multicopy Dendra2::tau strains exhibited expression level-dependent neuronal dysfunction that was modifiable by known genetic suppressors or an enhancer of tauopathy. Single-copy Dendra2::tau strains lacked distinguishable phenotypes on their own but enabled detection of enhancer-driven neuronal dysfunction. We used multicopy Dendra2::tau strains in optical pulse-chase experiments measuring tau turnover in vivo and found that Dendra2::tau turned over faster than the relatively stable Dendra2. Furthermore, Dendra2::tau turnover was dependent on the protein expression level and independent of co-expression with human TDP-43 (officially known as TARDBP), an aggregating protein interacting with pathological tau. We present Dendra2::tau transgenic C. elegans as a novel tool for investigating molecular mechanisms of tau proteostasis.
Collapse
Affiliation(s)
- Marina Han
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah M Waldherr
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Lotsios NS, Arvanitis N, Charonitakis AG, Mpekoulis G, Frakolaki E, Vassilaki N, Sideris DC, Vassilacopoulou D. Expression of Human L-Dopa Decarboxylase (DDC) under Conditions of Oxidative Stress. Curr Issues Mol Biol 2023; 45:10179-10192. [PMID: 38132481 PMCID: PMC10742706 DOI: 10.3390/cimb45120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Oxidative stress is known to influence mRNA levels, translation, and proteolysis. The importance of oxidative stress has been demonstrated in several human diseases, including neurodegenerative disorders. L-Dopa decarboxylase (DDC) is the enzyme that converts L-Dopa to dopamine (DA). In spite of a large number of studies, little is known about the biological significance of the enzyme under physiological and pathological conditions. Here, we investigated the relationship between DDC expression and oxidative stress in human neural and non-neural cells. Oxidative stress was induced by treatment with H2O2. Our data indicated that mRNA and protein expression of DDC was enhanced or remained stable under conditions of ROS induction, despite degradation of total RNA and increased cytotoxicity and apoptosis. Moreover, DDC silencing caused an increase in the H2O2-induced cytotoxicity. The current study suggests that DDC is involved in the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Nikolaos S. Lotsios
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - Nikolaos Arvanitis
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - Alexandros G. Charonitakis
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (G.M.); (N.V.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (G.M.); (N.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (G.M.); (N.V.)
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| |
Collapse
|
6
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
7
|
Motta C, Assogna M, Bonomi CG, Di Lorenzo F, Nuccetelli M, Mercuri NB, Koch G, Martorana A. Interplay between the catecholaminergic enzymatic axis and neurodegeneration/neuroinflammation processes in the Alzheimer's disease continuum. Eur J Neurol 2023; 30:839-848. [PMID: 36692274 DOI: 10.1111/ene.15691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The locus coeruleus (LC) provides dopamine/noradrenaline (DA/NA) innervation throughout the brain and undergoes early degeneration in Alzheimer's disease (AD). We evaluated catecholaminergic enzyme levels in the cerebrospinal fluid (CSF) of a group of patients biologically defined as within the AD continuum (ADc) and explored their relationship with AD biomarkers and cytokine/growth factor levels to investigate their interplay with neurodegenerative and neuroinflammatory processes. METHODS The CSF concentration of DA transporter (DAT), tyrosine-hydroxylase (TH), DOPA-decarboxylase (DDC), and dopamine-β-hydroxylase (DβH), as well as cytokine/growth factor levels, were analyzed in 41 ADc patients stratified according to CSF beta-amyloid (Aβ)1-42 (A) and p-tau (T) in AD pathological changes (A+ T-) and AD (A+ T+) subgroups, as well as in 15 control subjects (A- T-). RESULTS The ADc group had lower CSF levels of DAT and TH but increased DβH levels to compensate for NA synthesis. DDC levels were higher in the A+ T+ subgroup but comparable with controls in the A+ T- subgroup, probably because the DA system is resilient to the degeneration of LC neurons in the absence of tau pathology. Adjusting for age, sex, APOE genotype, and cognitive status, a significant association was found between TH and Aβ1-42 (R2 = 0.25) and between DDC and p-tau (R2 = 0.33). Finally, TH correlated with interleukin (IL)-10 levels (p = 0.0008) and DβH with IL-1β (p = 0.03), IL-4 (p = 0.02), granulocyte colony-stimulating factor (p = 0.007), and IL-17 (p = 0.01). CONCLUSIONS Taken together, these findings suggest that catecholaminergic enzymes, functional markers of the catecholaminergic system, are closely linked to the neurodegenerative and neuroinflammatory processes in AD pathology.
Collapse
Affiliation(s)
- Caterina Motta
- UOSD Centro Demenze, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Martina Assogna
- UOSD Centro Demenze, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Chiara Giuseppina Bonomi
- UOSD Centro Demenze, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Lorenzo
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Marzia Nuccetelli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Fadaka AO, Taiwo OA, Dosumu OA, Owolabi OP, Ojo AB, Sibuyi NRS, Ullah S, Klein A, Madiehe AM, Meyer M, Ojo OA. Computational prediction of potential drug-like compounds from Cannabis sativa leaf extracts targeted towards Alzheimer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kow RL, Black AH, Saxton AD, Liachko NF, Kraemer BC. Loss of aly/ALYREF suppresses toxicity in both tau and TDP-43 models of neurodegeneration. GeroScience 2022; 44:747-761. [PMID: 35122183 PMCID: PMC9135935 DOI: 10.1007/s11357-022-00526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative diseases with tau pathology, or tauopathies, include Alzheimer's disease and related dementia disorders. Previous work has shown that loss of the poly(A) RNA-binding protein gene sut-2/MSUT2 strongly suppressed tauopathy in Caenorhabditis elegans, human cell culture, and mouse models of tauopathy. However, the mechanism of suppression is still unclear. Recent work has shown that MSUT2 protein interacts with the THO complex and ALYREF, which are components of the mRNA nuclear export complex. Additionally, previous work showed ALYREF homolog Ref1 modulates TDP-43 and G4C2 toxicity in Drosophila melanogaster models. We used transgenic C. elegans models of tau or TDP-43 toxicity to investigate the effects of loss of ALYREF function on tau and TDP-43 toxicity. In C. elegans, three genes are homologous to human ALYREF: aly-1, aly-2, and aly-3. We found that loss of C. elegans aly gene function, especially loss of both aly-2 and aly-3, suppressed tau-induced toxic phenotypes. Loss of aly-2 and aly-3 was also able to suppress TDP-43-induced locomotor behavior deficits. However, loss of aly-2 and aly-3 had divergent effects on mRNA and protein levels as total tau protein levels were reduced while mRNA levels were increased, but no significant effects were seen on total TDP-43 protein or mRNA levels. Our results suggest that although aly genes modulate both tau and TDP-43-induced toxicity phenotypes, the molecular mechanisms of suppression are different and separated from impacts on mRNA and protein levels. Altogether, this study highlights the importance of elucidating RNA-related mechanisms in both tau and TDP-43-induced toxicity.
Collapse
Affiliation(s)
- Rebecca L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Aristide H Black
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Trait anxiety, a personality risk factor associated with Alzheimer's Disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110124. [PMID: 33035604 DOI: 10.1016/j.pnpbp.2020.110124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly population and the leading cause of dementia worldwide. While senile plaques and neurofibrillary tangles have been proposed as the principal histopathologic hallmarks of AD, the exact etiology of this disease is still far from being clearly understood. AD has been recognized as pathological consequences of complex interactions among genetic, aging, medical, life style and psychosocial factors. Recently, the roles of neuroticism personality traits in AD incidence and progression have come into focus. More specifically, increasing evidence has further shown that the trait anxiety, one major component of neuroticism predicting the individual vulnerability in response to stress, is a risk factor for AD and may correlated with various AD pathologies. In this review, we summarized recent literature on the association of trait anxiety with AD. We also discussed the possible neuroendocrinological and neurochemical mechanisms of this association, which may provide clinical implications for AD diagnosis and therapy.
Collapse
|
11
|
Kow RL, Strovas TJ, McMillan PJ, Jacobi AM, Behlke MA, Saxton AD, Latimer CS, Keene CD, Kraemer BC. Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiol Dis 2021; 147:105148. [PMID: 33184027 PMCID: PMC8092974 DOI: 10.1016/j.nbd.2020.105148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.
Collapse
Affiliation(s)
- Rebecca L. Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Timothy J. Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Pamela J. McMillan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - Aleen D. Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Caitlin S. Latimer
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Department of Pathology, University of Washington, Seattle, WA 98195, USA,Corresponding author at: Seattle Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108, USA. (B.C. Kraemer)
| |
Collapse
|
12
|
Chalatsa I, Arvanitis N, Arvanitis D, Tsakou AC, Kalantzis ED, Vassiliou AG, Sideris DC, Frakolaki E, Vassilaki N, Vassilacopoulou D. Human L-Dopa decarboxylase interaction with annexin V and expression during apoptosis. Biochimie 2020; 177:78-86. [PMID: 32835737 DOI: 10.1016/j.biochi.2020.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023]
Abstract
l-Dopa Decarboxylase (DDC) is a pyridoxal requiring enzyme that catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (l-Dopa) to Dopamine (DA). The function of DDC in physiological and pathological biochemical pathways remains poorly understood, while the function and regulation of human DDC isoforms is almost completely elusive. We have shown that Annexin V, a fundamental apoptosis marker, is an inhibitor of l-Dopa decarboxylase activity. Here we show the interaction of both the full-length DDC and the truncated isoform alternative DDC (Alt-DDC) with Annexin V in human tissue and cell lines. Interestingly, DDC isoform expression is enhanced or remains unaffected following staurosporine (STS) treatment, despite increased levels of cytotoxicity and apoptosis. The findings presented here provide novel insights concerning the involvement of DDC in programmed cell death.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece; Neurodegenerative Diseases Division, Center for Basic Research, Foundation for Biomedical Research of the Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Nikolaos Arvanitis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Dimitrios Arvanitis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Anastasia C Tsakou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Evangelos D Kalantzis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), Vas. Sofias 127 av, 11521, Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), Vas. Sofias 127 av, 11521, Athens, Greece
| | - Dido Vassilacopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| |
Collapse
|
13
|
Crowe A, Henderson MJ, Anderson J, Titus SA, Zakharov A, Simeonov A, Buist A, Delay C, Moechars D, Trojanowski JQ, Lee VMY, Brunden KR. Compound screening in cell-based models of tau inclusion formation: Comparison of primary neuron and HEK293 cell assays. J Biol Chem 2020; 295:4001-4013. [PMID: 32034092 DOI: 10.1074/jbc.ra119.010532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) brains are senile plaques, comprising β-amyloid (Aβ) peptides, and neuronal inclusions formed from tau protein. These plaques form 10-20 years before AD symptom onset, whereas robust tau pathology is more closely associated with symptoms and correlates with cognitive status. This temporal sequence of AD pathology development, coupled with repeated clinical failures of Aβ-directed drugs, suggests that molecules that reduce tau inclusions have therapeutic potential. Few tau-directed drugs are presently in clinical testing, in part because of the difficulty in identifying molecules that reduce tau inclusions. We describe here two cell-based assays of tau inclusion formation that we employed to screen for compounds that inhibit tau pathology: a HEK293 cell-based tau overexpression assay, and a primary rat cortical neuron assay with physiological tau expression. Screening a collection of ∼3500 pharmaceutical compounds with the HEK293 cell tau aggregation assay, we obtained only a low number of hit compounds. Moreover, these compounds generally failed to inhibit tau inclusion formation in the cortical neuron assay. We then screened the Prestwick library of mostly approved drugs in the cortical neuron assay, leading to the identification of a greater number of tau inclusion inhibitors. These included four dopamine D2 receptor antagonists, with D2 receptors having previously been suggested to regulate tau inclusions in a Caenorhabditis elegans model. These results suggest that neurons, the cells most affected by tau pathology in AD, are very suitable for screening for tau inclusion inhibitors.
Collapse
Affiliation(s)
- Alex Crowe
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Johnathon Anderson
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Arjan Buist
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Charlotte Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
14
|
Benbow SJ, Strovas TJ, Darvas M, Saxton A, Kraemer BC. Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Hum Mol Genet 2020; 29:495-505. [PMID: 31943011 PMCID: PMC7015844 DOI: 10.1093/hmg/ddz319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 02/02/2023] Open
Abstract
Aggregates of Aβ peptide and the microtubule-associated protein tau are key molecular hallmarks of Alzheimer's disease (AD). However, the interaction between these two pathologies and the mechanisms underlying disease progression have remained unclear. Numerous failed clinical trials suggest the necessity for greater mechanistic understanding in order to refine strategies for therapeutic discovery and development. To this end, we have generated a transgenic Caenorhabditis elegans model expressing both human Aβ1-42 peptide and human tau protein pan-neuronally. We observed exacerbated behavioral dysfunction and age-dependent neurodegenerative changes in the Aβ;tau transgenic animals. Further, these changes occurred in the Aβ;tau transgenic animals at greater levels than worms harboring either the Aβ1-42 or tau transgene alone and interestingly without changes to the levels of tau expression, phosphorylation or aggregation. Functional changes were partially rescued with the introduction of a genetic suppressor of tau pathology. Taken together, the data herein support a synergistic role for both Aβ and tau in driving neuronal dysfunction seen in AD. Additionally, we believe that the utilization of the genetically tractable C. elegans model will provide a key resource for dissecting mechanisms driving AD molecular pathology.
Collapse
Affiliation(s)
- Sarah J Benbow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Timothy J Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Martin Darvas
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
15
|
Griffin EF, Caldwell KA, Caldwell GA. Genetic and Pharmacological Discovery for Alzheimer's Disease Using Caenorhabditis elegans. ACS Chem Neurosci 2017; 8:2596-2606. [PMID: 29022701 DOI: 10.1021/acschemneuro.7b00361] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The societal burden presented by Alzheimer's disease warrants both innovative and expedient means by which its underlying molecular causes can be both identified and mechanistically exploited to discern novel therapeutic targets and strategies. The conserved characteristics, defined neuroanatomy, and advanced technological application of Caenorhabditis elegans render this metazoan an unmatched tool for probing neurotoxic factors. In addition, its short lifespan and importance in the field of aging make it an ideal organism for modeling age-related neurodegenerative disease. As such, this nematode system has demonstrated its value in predicting functional modifiers of human neurodegenerative disorders. Here, we review how C. elegans has been utilized to model Alzheimer's disease. Specifically, we present how the causative neurotoxic peptides, amyloid-β and tau, contribute to disease-like neurodegeneration in C. elegans and how they translate to human disease. Furthermore, we describe how a variety of transgenic animal strains, each with distinct utility, have been used to identify both genetic and pharmacological modifiers of toxicity in C. elegans. As technological advances improve the prospects for intervention, the rapidity, unparalleled accuracy, and scale that C. elegans offers researchers for defining functional modifiers of neurodegeneration should speed the discovery of improved therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward F. Griffin
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kim A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Departments
of Neurology and Neurobiology, Center for Neurodegeneration and Experimental
Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|