1
|
Hu YB, Deng X, Liu L, Cao CC, Su YW, Gao ZJ, Cheng X, Kong D, Li Q, Shi YW, Wang XG, Ye X, Zhao H. Distinct roles of excitatory and inhibitory neurons in the medial prefrontal cortex in the expression and reconsolidation of methamphetamine-associated memory in male mice. Neuropsychopharmacology 2024; 49:1827-1838. [PMID: 38730034 PMCID: PMC11473735 DOI: 10.1038/s41386-024-01879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine, a commonly abused drug, is known for its high relapse rate. The persistence of addictive memories associated with methamphetamine poses a significant challenge in preventing relapse. Memory retrieval and subsequent reconsolidation provide an opportunity to disrupt addictive memories. However, the key node in the brain network involved in methamphetamine-associated memory retrieval has not been clearly defined. In this study, using the conditioned place preference in male mice, whole brain c-FOS mapping and functional connectivity analysis, together with chemogenetic manipulations of neural circuits, we identified the medial prefrontal cortex (mPFC) as a critical hub that integrates inputs from the retrosplenial cortex and the ventral tegmental area to support both the expression and reconsolidation of methamphetamine-associated memory during its retrieval. Surprisingly, with further cell-type specific analysis and manipulation, we also observed that methamphetamine-associated memory retrieval activated inhibitory neurons in the mPFC to facilitate memory reconsolidation, while suppressing excitatory neurons to aid memory expression. These findings provide novel insights into the neural circuits and cellular mechanisms involved in the retrieval process of addictive memories. They suggest that targeting the balance between excitation and inhibition in the mPFC during memory retrieval could be a promising treatment strategy to prevent relapse in methamphetamine addiction.
Collapse
Affiliation(s)
- Yu-Bo Hu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Deng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lu Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Can-Can Cao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ya-Wen Su
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhen-Jie Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Deshan Kong
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qi Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Yao JY, Zhao TS, Guo ZR, Li MQ, Lu XY, Zou GJ, Chen ZR, Liu Y, Cui YH, Li F, Li CQ. Degradation of perineuronal nets in the medial prefrontal cortex promotes extinction and reduces reinstatement of methamphetamine-induced conditioned place preference in female mice. Behav Brain Res 2024; 472:115152. [PMID: 39032868 DOI: 10.1016/j.bbr.2024.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.
Collapse
Affiliation(s)
- Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
4
|
Zhang L, Meng S, Huang E, Di T, Ding Z, Huang S, Chen W, Zhang J, Zhao S, Yuwen T, Chen Y, Xue Y, Wang F, Shi J, Shi Y. High frequency deep brain stimulation of the dorsal raphe nucleus prevents methamphetamine priming-induced reinstatement of drug seeking in rats. Transl Psychiatry 2024; 14:190. [PMID: 38622130 PMCID: PMC11018621 DOI: 10.1038/s41398-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Drug addiction represents a multifaceted and recurrent brain disorder that possesses the capability to create persistent and ineradicable pathological memory. Deep brain stimulation (DBS) has shown a therapeutic potential for neuropsychological disorders, while the precise stimulation targets and therapeutic parameters for addiction remain deficient. Among the crucial brain regions implicated in drug addiction, the dorsal raphe nucleus (DRN) has been found to exert an essential role in the manifestation of addiction memory. Thus, we investigated the effects of DRN DBS in the treatment of addiction and whether it might produce side effects by a series of behavioral assessments, including methamphetamine priming-induced reinstatement of drug seeking behaviors, food-induced conditioned place preference (CPP), open field test and elevated plus-maze test, and examined brain activity and connectivity after DBS of DRN. We found that high-frequency DBS of the DRN significantly lowered the CPP scores and the number of active-nosepokes in the methamphetamine-primed CPP test and the self-administration model. Moreover, both high-frequency and sham DBS group rats were able to establish significant food-induced place preference, and no significant difference was observed in the open field test and in the elevated plus-maze test between the two groups. Immunofluorescence staining and functional magnetic resonance imaging revealed that high-frequency DBS of the DRN could alter the activity and functional connectivity of brain regions related to addiction. These results indicate that high-frequency DBS of the DRN effectively inhibits methamphetamine priming-induced relapse and seeking behaviors in rats and provides a new target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Libo Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Tianqi Di
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jiayi Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shenghong Zhao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ting Yuwen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Yang Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Jie Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China.
| |
Collapse
|
5
|
Zheng H, Zhai T, Lin X, Dong G, Yang Y, Yuan TF. The resting-state brain activity signatures for addictive disorders. MED 2024; 5:201-223.e6. [PMID: 38359839 PMCID: PMC10939772 DOI: 10.1016/j.medj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.
Collapse
Affiliation(s)
- Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming 650092, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
6
|
Wu F, Dong P, Wu G, Deng J, Gao X, Song X, Yuan J, Sun H. The disruption of white matter integrity of systemic striatal circuits in alcohol-dependent males with physiological cue reactivity. Addict Biol 2023; 28:e13273. [PMID: 37016754 DOI: 10.1111/adb.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 04/06/2023]
Abstract
Alcohol dependence (AD) is a chronic and relapsing disorder. Conditioned cues associated with the rewarding properties of drugs could trigger motivational/physiological reactions and render subjects vulnerable to relapse. Striatal circuit dysfunction has been implicated in alcohol addiction behaviours. However, little is known about the striatal tracts structural connectivity changes underlying cue induced reactivity in AD. In our present study, we recruited 51 patients with AD; 31 individuals had physiological response. We used seed-based classification by probabilistic tractography with nine target masks to explore the white matter integrity of striatal circuits in physiological responders (N = 31), non-responders (N = 20), and healthy controls (N = 27). Compared with healthy controls, physiological responders showed lower fractional anisotropy (FA) and/or higher mean diffusivity in the striatum-dorsolateral prefrontal cortex (dlPFC), striatum-ventral lateral prefrontal cortex, striatum-supplementary motor area (SMA), and striatum-insular. Considering age and smoking are potential nuisances to diffusion parameters, an analysis of covariance also was conducted and similar results were found. We also found the cue-induced physiological response was negatively associated with the FA of the striatum-SMA (r = -0.287; p = 0.045) and left striatum-dlPFC (r = -0.253; p = 0.079) in AD. In our study, we found abnormal integrity of striatal circuit structural connectivity in AD with physiological cue reactivity, especially trajectory from prefrontal cortex and insular. We also found the FA of striatal tracks was negatively associated with the degree of cue reactivity. Our findings provide further evidence for reduced white matter integrity of striatal circuits for cue reactivity in male individuals with AD.
Collapse
Affiliation(s)
- Fei Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Ping Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Junliang Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| |
Collapse
|
7
|
Li JY, Yu YJ, Su CL, Shen YQ, Chang CH, Gean PW. Modulation of methamphetamine memory reconsolidation by neural projection from basolateral amygdala to nucleus accumbens. Neuropsychopharmacology 2023; 48:478-488. [PMID: 36109595 PMCID: PMC9852248 DOI: 10.1038/s41386-022-01417-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023]
Abstract
Drug-associated conditioned cues promote subjects to recall drug reward memory, resulting in drug-seeking and reinstatement. A consolidated memory becomes unstable after recall, such that the amnestic agent can disrupt the memory during the reconsolidation stage, which implicates a potential therapeutic strategy for weakening maladaptive memories. The basolateral amygdala (BLA) involves the association of conditioned cues with reward and aversive valences and projects the information to the nucleus accumbens (NAc) that mediates reward-seeking. However, whether the BLA-NAc projection plays a role in drug-associated memory reactivation and reconsolidation is unknown. We used methamphetamine (MeAM) conditioned place preference (CPP) to investigate the role of BLA-NAc neural projection in the memory reconsolidation. Two weeks before CPP training, we infused adeno-associated virus (AAV) carrying the designer receptor exclusively activated by designer drugs (DREADD) or control constructs. We infused clozapine-N-oxide (CNO) after the recall test to manipulate the neural activity of BLA-NAc projections in mice. We found that after recall, DREADD-mediated inhibition of BLA neurons projecting to the NAc core blunted consolidated MeAM-associated memory. Inhibition of BLA glutamatergic nerve terminals in the NAc core 1 h after recall disrupted consolidated MeAM-associated memory. However, inhibiting this pathway after the time window of reconsolidation failed to affect memory. Furthermore, under the condition without memory retrieval, DREADD-mediated activation of BLA-NAc core projection was required for amnesic agents to disrupt consolidated MeAM-associated memory. Our findings provide evidence that the BLA-NAc pathway activity is involved in the post-retrieval processing of MeAM-associated memory in CPP.
Collapse
Affiliation(s)
- Jia-Ying Li
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Yang-Jung Yu
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Chun-Lin Su
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Yu-Qi Shen
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
8
|
Rose TR, Marron Fernandez de Velasco E, Mitten EH, Wickman K. GIRK channel activity in prelimbic pyramidal neurons regulates the extinction of cocaine conditioned place preference in male mice. Addict Biol 2023; 28:e13256. [PMID: 36577727 PMCID: PMC10078116 DOI: 10.1111/adb.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Drug-induced neuroadaptations in the prefrontal cortex (PFC) have been implicated in drug-associated memories that motivate continued drug use. Chronic cocaine exposure increases pyramidal neuron excitability in the prelimbic subregion of the PFC (PL), an adaptation that has been attributed in part to a suppression of inhibitory signalling mediated by the GABAB receptor (GABAB R) and G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels. Although reduced GIRK channel activity in PL pyramidal neurons enhances the motor-stimulatory effect of cocaine in mice, the impact on cocaine reward and associated memories remains unclear. Here, we employed Cre- and CRISPR/Cas9-based viral manipulation strategies to evaluate the impact of GIRK channel or GABAB R ablation in PL pyramidal neurons on cocaine-induced conditioned place preference (CPP) and extinction. Neither ablation of GIRK channels nor GABAB R impacted the acquisition of cocaine CPP. GIRK channel ablation in PL pyramidal neurons, however, impaired extinction of cocaine CPP in male but not female mice. Since ablation of GIRK channels but not GABAB R increased PL pyramidal neuron excitability, we used a chemogenetic approach to determine if acute excitation of PL pyramidal neurons impaired the expression of extinction in male mice. While acute chemogenetic excitation of PL pyramidal neurons induced locomotor hyperactivity, it did not impair the extinction of cocaine CPP. Lastly, we found that persistent enhancement of GIRK channel activity in PL pyramidal neurons accelerated the extinction of cocaine CPP. Collectively, our findings show that the strength of GIRK channel activity in PL pyramidal neurons bi-directionally regulates cocaine CPP extinction in male mice.
Collapse
Affiliation(s)
- Timothy R Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Eric H Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Stewart A, Mayer FP, Gowrishankar R, Davis GL, Areal LB, Gresch PJ, Katamish RM, Peart R, Stilley SE, Spiess K, Rabil MJ, Diljohn FA, Wiggins AE, Vaughan RA, Hahn MK, Blakely RD. Behaviorally penetrant, anomalous dopamine efflux exposes sex and circuit dependent regulation of dopamine transporters. Mol Psychiatry 2022; 27:4869-4880. [PMID: 36117213 DOI: 10.1038/s41380-022-01773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023]
Abstract
Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Felix P Mayer
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gwynne L Davis
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Paul J Gresch
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Rania M Katamish
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Rodeania Peart
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Samantha E Stilley
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Keeley Spiess
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian J Rabil
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Angelica E Wiggins
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Maureen K Hahn
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA. .,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
10
|
Wang C, Stratton PG, Sah P, Marek R. Theta coupling within the medial prefrontal cortex regulates fear extinction and renewal. iScience 2022; 25:105036. [PMID: 36147953 PMCID: PMC9485106 DOI: 10.1016/j.isci.2022.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Fear learning, and its extinction, are fundamental learning processes that allow for a response adaptation to aversive events and threats in the environment. Thus, it is critical to understand the neural mechanism that underpins fear learning and its relapse following extinction. The neural dynamics within the subregions of the medial prefrontal cortex, including the prelimbic cortex (PL) and the infralimbic (IL) cortex, and functional connectivity between them during fear extinction and its relapse, are not well understood. Using in-vivo electrophysiological recordings in awake behaving rats, we identified increased theta activity in the PL during fear learning and in the IL following extinction. Importantly, the PL-IL theta coupling is significantly enhanced throughout fear learning and extinction, but not in fear relapse. Together, our results provide evidence for the importance of synchronized PL-IL activity to regulate context-dependent retrieval of a fear extinction memory.
Collapse
Affiliation(s)
- Cong Wang
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| | - Peter G. Stratton
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, P. R. China, 518055
| | - Roger Marek
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| |
Collapse
|