1
|
Gronchi G, Gavazzi G, Viggiano MP, Giovannelli F. Dual-Process Theory of Thought and Inhibitory Control: An ALE Meta-Analysis. Brain Sci 2024; 14:101. [PMID: 38275521 PMCID: PMC10813498 DOI: 10.3390/brainsci14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The dual-process theory of thought rests on the co-existence of two different thinking modalities: a quick, automatic, and associative process opposed to a slow, thoughtful, and deliberative process. The increasing interest in determining the neural foundation of the dual-process distinction has yielded mixed results, also given the difficulty of applying the fMRI standard approach to tasks usually employed in the cognitive literature. We report an activation likelihood estimation (ALE) meta-analysis to investigate the neural foundation of the dual-process theory of thought. Eligible studies allowed for the identification of cerebral areas associated with dual-process theory-based tasks without differentiating between fast and slow thinking. The ALE algorithm converged on the medial frontal cortex, superior frontal cortex, anterior cingulate cortex, insula, and left inferior frontal gyrus. These structures partially overlap with the cerebral areas recurrently reported in the literature about the neural basis of the dual-process distinction, where the PARCS theory-based interpretation emphasizes the role of the right inferior gyrus. The results confirm the potential (but still almost unexplored) common ground between the dual-process literature and the cognitive control literature.
Collapse
Affiliation(s)
| | | | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (G.G.); (G.G.); (F.G.)
| | | |
Collapse
|
2
|
Gazzo Castañeda LE, Sklarek B, Dal Mas DE, Knauff M. Probabilistic and Deductive Reasoning in the Human Brain. Neuroimage 2023; 275:120180. [PMID: 37211191 DOI: 10.1016/j.neuroimage.2023.120180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023] Open
Abstract
Reasoning is a process of inference from given premises to new conclusions. Deductive reasoning is truth-preserving and conclusions can only be either true or false. Probabilistic reasoning is based on degrees of belief and conclusions can be more or less likely. While deductive reasoning requires people to focus on the logical structure of the inference and ignore its content, probabilistic reasoning requires the retrieval of prior knowledge from memory. Recently, however, some researchers have denied that deductive reasoning is a faculty of the human mind. What looks like deductive inference might actually also be probabilistic inference, only with extreme probabilities. We tested this assumption in an fMRI experiment with two groups of participants: one group was instructed to reason deductively, the other received probabilistic instructions. They could freely choose between a binary and a graded response to each problem. The conditional probability and the logical validity of the inferences were systematically varied. Results show that prior knowledge was only used in the probabilistic reasoning group. These participants gave graded responses more often than those in the deductive reasoning group and their reasoning was accompanied by activations in the hippocampus. Participants in the deductive group mostly gave binary responses and their reasoning was accompanied by activations in the anterior cingulate cortex, inferior frontal cortex, and parietal regions. These findings show that (1) deductive and probabilistic reasoning rely on different neurocognitive processes, (2) people can suppress their prior knowledge to reason deductively, and (3) not all inferences can be reduced to probabilistic reasoning.
Collapse
Affiliation(s)
| | - Benjamin Sklarek
- Experimental Psychology and Cognitive Science, Justus Liebig University Giessen
| | - Dennis E Dal Mas
- Experimental Psychology and Cognitive Science, Justus Liebig University Giessen
| | - Markus Knauff
- Experimental Psychology and Cognitive Science, Justus Liebig University Giessen
| |
Collapse
|
3
|
Anodal transcranial direct current stimulation over the right dorsolateral prefrontal cortex enhances reflective judgment and decision-making. Brain Stimul 2019; 12:652-658. [DOI: 10.1016/j.brs.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022] Open
|
4
|
Yin Y, Yu T, Wang S, Zhou S, Tang X, Stupple EJ, Luo J. Event-related potentials support a dual process account of the Embedded Chinese Character Task. Neuropsychologia 2018; 121:186-192. [DOI: 10.1016/j.neuropsychologia.2018.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022]
|
5
|
Zhang Y, Ide JS, Zhang S, Hu S, Valchev NS, Tang X, Li CSR. Distinct neural processes support post-success and post-error slowing in the stop signal task. Neuroscience 2017. [PMID: 28627420 DOI: 10.1016/j.neuroscience.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Executive control requires behavioral adaptation to environmental contingencies. In the stop signal task (SST), participants exhibit slower go trial reaction time (RT) following a stop trial, whether or not they successfully interrupt the motor response. In previous fMRI studies, we demonstrated activation of the right-hemispheric ventrolateral prefrontal cortex, in the area of inferior frontal gyrus, pars opercularis (IFGpo) and anterior insula (AI), during post-error slowing (PES). However, in similar analyses we were not able to identify regional activities during post-success slowing (PSS). Here, we revisited this issue in a larger sample of participants (n=100) each performing the SST for 40 min during fMRI. We replicated IFGpo/AI activation to PES (p≤0.05, FWE corrected). Further, PSS engages decreased activation in a number of cortical regions including the left inferior frontal cortex (IFC; p≤0.05, FWE corrected). We employed Granger causality mapping to identify areas that provide inputs each to the right IFGpo/AI and left IFC, and computed single-trial amplitude (STA) of stop trials of these input regions as well as the STA of post-stop trials of the right IFGpo/AI and left IFC. The STAs of the right inferior precentral sulcus and supplementary motor area (SMA) and right IFGpo/AI were positively correlated and the STAs of the left SMA and left IFC were positively correlated (slope>0, p's≤0.01, one-sample t test), linking regional responses during stop success and error trials to those during PSS and PES. These findings suggest distinct neural mechanisms to support PSS and PES.
Collapse
Affiliation(s)
- Yihe Zhang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Psychology, State University of New York, Oswego, NY, United States
| | - Nikola S Valchev
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States; Beijing Huilongguan Hospital, Beijing, China.
| |
Collapse
|
6
|
Stupple EJN, Ball LJ. The intersection between Descriptivism and Meliorism in reasoning research: further proposals in support of 'soft normativism'. Front Psychol 2014; 5:1269. [PMID: 25414687 PMCID: PMC4220629 DOI: 10.3389/fpsyg.2014.01269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/19/2014] [Indexed: 11/24/2022] Open
Abstract
The rationality paradox centers on the observation that people are highly intelligent, yet show evidence of errors and biases in their thinking when measured against normative standards. Elqayam and Evans’ (2011) reject normative standards in the psychological study of thinking, reasoning and deciding in favor of a ‘value-free’ descriptive approach to studying high-level cognition. In reviewing Elqayam and Evans’ (2011) position, we defend an alternative to descriptivism in the form of ‘soft normativism,’ which allows for normative evaluations alongside the pursuit of descriptive research goals. We propose that normative theories have considerable value provided that researchers: (1) are alert to the philosophical quagmire of strong relativism; (2) are mindful of the biases that can arise from utilizing normative benchmarks; and (3) engage in a focused analysis of the processing approach adopted by individual reasoners. We address the controversial ‘is–ought’ inference in this context and appeal to a ‘bridging solution’ to this contested inference that is based on the concept of ‘informal reflective equilibrium.’ Furthermore, we draw on Elqayam and Evans’ (2011) recognition of a role for normative benchmarks in research programs that are devised to enhance reasoning performance and we argue that such Meliorist research programs have a valuable reciprocal relationship with descriptivist accounts of reasoning. In sum, we believe that descriptions of reasoning processes are fundamentally enriched by evaluations of reasoning quality, and argue that if such standards are discarded altogether then our explanations and descriptions of reasoning processes are severely undermined.
Collapse
Affiliation(s)
| | - Linden J Ball
- School of Psychology, University of Central Lancashire Preston, UK
| |
Collapse
|