1
|
Li X, Jin R, Lu X, Zhan Y, Jiang N, Peng W. Alpha transcranial alternating current stimulation modulates pain anticipation and perception in a context-dependent manner. Pain 2024:00006396-990000000-00745. [PMID: 39432811 DOI: 10.1097/j.pain.0000000000003452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Pain perception is closely tied to the brain's anticipatory processes, particularly involving the suppression of sensorimotor α-oscillations, which reflect the system's readiness for incoming pain. Higher sensorimotor α-oscillation levels are correlated with lower pain sensitivity. Alpha transcranial alternating current stimulation (α-tACS) can enhance these oscillations, potentially reducing pain perception, with effects that may be sustained and influenced by the certainty of pain expectations. Hence, this study investigated the immediate and sustained effects of α-tACS on pain anticipation and perception, focusing on how these effects are shaped by the certainty of expectations. In a double-blind, sham-controlled design, 80 healthy participants underwent a 20-minute session of real or sham α-tACS over the right sensorimotor region. Behavioral and neural responses related to pain anticipation and perception were recorded before, immediately after, and 30 minutes poststimulation under both certain and uncertain conditions. Compared with sham stimulation, real α-tACS disrupted the habituation of laser-evoked potentials (N2-P2 complex), particularly under certain expectations, with effects persisting 30 minutes poststimulation. In anticipatory brain oscillations, real α-tACS enhanced somatosensory α1-oscillations and increased midfrontal θ-oscillations in conditions of certainty, with θ-oscillation modulation showing sustained effects. Mediation analysis revealed that α-tACS reduced pain reactivity by enhancing somatosensory α1-oscillations but increased pain reactivity through the enhancement of midfrontal θ-oscillations, with the latter effect being more pronounced. These findings suggest that while α-tACS may provide pain relief through somatosensory α-oscillation augmentation, its stronger and longer-lasting impact on midfrontal θ-oscillations could lead to hyperalgesia, particularly in the context of certain pain expectations.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yilin Zhan
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Naifu Jiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Chouchou F, Fauchon C, Perchet C, Garcia-Larrea L. An approach to the detection of pain from autonomic and cortical correlates. Clin Neurophysiol 2024; 166:152-165. [PMID: 39178550 DOI: 10.1016/j.clinph.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE To assess the value of combining brain and autonomic measures to discriminate the subjective perception of pain from other sensory-cognitive activations. METHODS 20 healthy individuals received 2 types of tonic painful stimulation delivered to the hand: electrical stimuli and immersion in 10 Celsius degree (°C) water, which were contrasted with non-painful immersion in 15 °C water, and stressful cognitive testing. High-density electroencephalography (EEG) and autonomic measures (pupillary, electrodermal and cardiovascular) were continuously recorded, and the accuracy of pain detection based on combinations of electrophysiological features was assessed using machine learning procedures. RESULTS Painful stimuli induced a significant decrease in contralateral EEG alpha power. Cardiac, electrodermal and pupillary reactivities occurred in both painful and stressful conditions. Classification models, trained on leave-one-out cross-validation folds, showed low accuracy (61-73%) of cortical and autonomic features taken independently, while their combination significantly improved accuracy to 93% in individual reports. CONCLUSIONS Changes in cortical oscillations reflecting somatosensory salience and autonomic changes reflecting arousal can be triggered by many activating signals other than pain; conversely, the simultaneous occurrence of somatosensory activation plus strong autonomic arousal has great probability of reflecting pain uniquely. SIGNIFICANCE Combining changes in cortical and autonomic reactivities appears critical to derive accurate indexes of acute pain perception.
Collapse
Affiliation(s)
- F Chouchou
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Saint-Etienne, University of Lyon, France; IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion, Le Tampon, France.
| | - C Fauchon
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Saint-Etienne, University of Lyon, France; Neuro-Dol, Inserm 1107, University Hospital of Clermont-Ferrand, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - C Perchet
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Saint-Etienne, University of Lyon, France
| | - L Garcia-Larrea
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Saint-Etienne, University of Lyon, France
| |
Collapse
|
3
|
Liu X, Wei S, Zhao X, Bi Y, Hu L. Establishing the relationship between subjective perception and neural responses: Insights from correlation analysis and representational similarity analysis. Neuroimage 2024; 295:120650. [PMID: 38768740 DOI: 10.1016/j.neuroimage.2024.120650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Exploring the relationship between sensory perception and brain responses holds important theoretical and clinical implications. However, commonly used methodologies like correlation analysis performed either intra- or inter- individually often yield inconsistent results across studies, limiting their generalizability. Representational similarity analysis (RSA), a method that assesses the perception-response relationship by calculating the correlation between behavioral and neural patterns, may offer a fresh perspective to reveal novel findings. Here, we delivered a series of graded sensory stimuli of four modalities (i.e., nociceptive somatosensory, non-nociceptive somatosensory, visual, and auditory) to/near the left or right hand of 107 healthy subjects and collected their single-trial perceptual ratings and electroencephalographic (EEG) responses. We examined the relationship between sensory perception and brain responses using within- and between-subject correlation analysis and RSA, and assessed their stability across different numbers of subjects and trials. We found that within-subject and between-subject correlations yielded distinct results: within-subject correlation revealed strong and reliable correlations between perceptual ratings and most brain responses, while between-subject correlation showed weak correlations that were vulnerable to the change of subject number. In addition to verifying the correlation results, RSA revealed some novel findings, i.e., correlations between behavioral and neural patterns were observed in some additional neural responses, such as "γ-ERS" in the visual modality. RSA results were sensitive to the trial number, but not to the subject number, suggesting that consistent results could be obtained for studies with relatively small sample sizes. In conclusion, our study provides a novel perspective on establishing the relationship between behavior and brain activity, emphasizing that RSA holds promise as a method for exploring this pattern relationship in future research.
Collapse
Affiliation(s)
- Xu Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Shiyu Wei
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Joo P, Kim M, Kish B, Nair VV, Tong Y, Liu Z, O'Brien ARW, Harte SE, Harris RE, Lee U, Wang Y. Brain network hypersensitivity underlies pain crises in sickle cell disease. Sci Rep 2024; 14:7315. [PMID: 38538687 PMCID: PMC10973361 DOI: 10.1038/s41598-024-57473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder causing painful and unpredictable Vaso-occlusive crises (VOCs) through blood vessel blockages. In this study, we propose explosive synchronization (ES) as a novel approach to comprehend the hypersensitivity and occurrence of VOCs in the SCD brain network. We hypothesized that the accumulated disruptions in the brain network induced by SCD might lead to strengthened ES and hypersensitivity. We explored ES's relationship with patient reported outcome measures (PROMs) as well as VOCs by analyzing EEG data from 25 SCD patients and 18 matched controls. SCD patients exhibited lower alpha frequency than controls. SCD patients showed correlation between frequency disassortativity (FDA), an ES condition, and three important PROMs. Furthermore, stronger FDA was observed in SCD patients with a higher frequency of VOCs and EEG recording near VOC. We also conducted computational modeling on SCD brain network to study FDA's role in network sensitivity. Our model demonstrated that a stronger FDA could be linked to increased sensitivity and frequency of VOCs. This study establishes connections between SCD pain and the universal network mechanism, ES, offering a strong theoretical foundation. This understanding will aid predicting VOCs and refining pain management for SCD patients.
Collapse
Affiliation(s)
- Pangyu Joo
- Department of Anesthesiology, Center for Consciousness Science, Center for the Study of Complex Systems, Michigan Psychedelic Center, University of Michigan, Arbor Lakes Building 1 Suite 2200, 4251 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Minkyung Kim
- Department of Anesthesiology, Center for Consciousness Science, Center for the Study of Complex Systems, Michigan Psychedelic Center, University of Michigan, Arbor Lakes Building 1 Suite 2200, 4251 Plymouth Road, Ann Arbor, MI, 48105, USA
| | - Brianna Kish
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ziyue Liu
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew R W O'Brien
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven E Harte
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Richard E Harris
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
- Susan Samueli Integrative Health Institute, and Department of Anesthesiology and Perioperative Care, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - UnCheol Lee
- Department of Anesthesiology, Center for Consciousness Science, Center for the Study of Complex Systems, Michigan Psychedelic Center, University of Michigan, Arbor Lakes Building 1 Suite 2200, 4251 Plymouth Road, Ann Arbor, MI, 48105, USA.
| | - Ying Wang
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anesthesia, Stark Neurosciences Research Institute, Indiana University School of Medicine, Stark Neuroscience Building, Rm# 514E, 320 West 15th Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Taniguchi T, Kinukawa TA, Takeuchi N, Sugiyama S, Nishihara M, Kida T, Nishiwaki K, Inui K. Cortical activity during the wind-up of flexion reflex and pain: a magnetoencephalographic study using time-frequency analysis. Cereb Cortex 2023; 33:7678-7687. [PMID: 36920227 PMCID: PMC11705082 DOI: 10.1093/cercor/bhad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Wind-up is a nociceptive-specific phenomenon in which pain sensations are facilitated, in a frequency-dependent manner, by the repeated application of noxious stimuli of constant intensity, with invariant tactile sensations. Thus, cortical activities during wind-up could be an alteration associated with pain potentiation. We aimed to investigate somatosensory-evoked cortical responses and induced brain oscillations during wind-up by recording magnetoencephalograms. Wind-up was produced by the application of 11 consecutive electrical stimuli to the sural nerve, repeated at a frequency of 1 Hz without varying the intensity. The augmentation of flexion reflexes and pain rating scores were measured simultaneously as an index of wind-up. In the time-frequency analyses, the γ-band late event-related synchronization and the β-band event-related desynchronization were observed in the primary somatosensory region and the bilateral operculo-insular region, respectively. Repetitive exposure to the stimuli enhanced these activities, along with an increase in the flexion reflex magnitude. The evoked cortical activity reflected novelty, with no alteration to these repetitive stimuli. Observed oscillations enhanced by repetitive stimulation at a constant intensity could reflect a pain mechanism associated with wind-up.
Collapse
Affiliation(s)
- Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya 467-8601, Japan
| | - Tomoaki Alex Kinukawa
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya 467-8601, Japan
| | - Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1131, Japan
| | | | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute 480-1131, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0304, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kimitoshi Nishiwaki
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya 467-8601, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0304, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
7
|
Cooke JI, Guven O, Abarca PC, Ibitoye RT, Pettorossi VE, Bronstein AM. Electroencephalographic response to transient adaptation of vestibular perception. J Physiol 2022; 600:3517-3535. [PMID: 35713975 PMCID: PMC9544486 DOI: 10.1113/jp282470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Abstract When given a series of sinusoidal oscillations in which the two hemicycles have equal amplitude but asymmetric velocity, healthy subjects lose perception of the slower hemicycle (SHC), reporting a drift towards the faster hemicycle (FHC). This response is not reflected in the vestibular–ocular reflex, suggesting that the adaptation is of higher order. This study aimed to define EEG correlates of this adaptive response. Twenty‐five subjects underwent a series of symmetric or asymmetric oscillations and reported their perceived head orientation at the end using landmarks in the testing room; this was converted into total position error (TPE). Thirty‐two channel EEG was recorded before, during and after adaptation. Spectral power and coherence were calculated for the alpha, beta, delta and theta frequency bands. Linear mixed models were used to determine a region‐by‐condition effect of the adaptation. TPE was significantly greater in the asymmetric condition and reported error was always in the direction of the FHC. Regardless of condition, alpha desynchronised in response to stimulation, then rebounded back toward baseline values. This pattern was accelerated and attenuated in the prefrontal and occipital regions, respectively, in the asymmetric condition. Functional connectivity networks were identified in the beta and delta frequency bands; these networks, primarily comprising frontoparietal connections, were more coherent during asymmetric stimulation. These findings suggest that the temporary vestibulo‐perceptual ‘neglect’ induced by asymmetric vestibular stimulation may be mediated by alpha rhythms and frontoparietal attentional networks. The results presented further our understanding of brain rhythms and cortical networks involved in vestibular perception and adaptation.
![]() Key points Whole‐body asymmetric sinusoidal oscillations, which consist of hemicycles with equal amplitude but differing velocities, can induce transient ‘neglect’ of the slower hemicycle in the vestibular perception of healthy subjects. In this study, we aimed to elucidate EEG correlates of this ‘neglect’, thereby identifying a cortical role in vestibular perception and adaptation. We identified a desynchronisation–resynchronisation response in the alpha frequency band (8–14 Hz) that was accelerated in the prefrontal region and attenuated in the occipital region when exposed to asymmetric, as compared to symmetric, rotations. We additionally identified functional connectivity networks in the beta (14–30 Hz) and delta (1–4 Hz) frequency bands consisting primarily of frontoparietal connections. These results suggest a prominent role of alpha rhythms and frontoparietal attentional networks in vestibular perception and adaptation.
Collapse
Affiliation(s)
- Josephine I Cooke
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| | - Onur Guven
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| | - Patricia Castro Abarca
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK.,Escuela de Fonoaudiología, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Richard T Ibitoye
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| | - Vito E Pettorossi
- Dipartimento di Medicina e Chirurgia, Sezione di Fisiologia Umana e Biochemica, Università Degli Studi di Perugia, Perugia, Italy
| | - Adolfo M Bronstein
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| |
Collapse
|
8
|
Zolezzi DM, Alonso-Valerdi LM, Ibarra-Zarate DI. Chronic neuropathic pain is more than a perception: Systems and methods for an integral characterization. Neurosci Biobehav Rev 2022; 136:104599. [PMID: 35271915 DOI: 10.1016/j.neubiorev.2022.104599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
The management of chronic neuropathic pain remains a challenge, because pain is subjective, and measuring it objectively is usually out of question. However, neuropathic pain is also a signal provided by maladaptive neuronal activity. Thus, the integral management of chronic neuropathic pain should not only rely on the subjective perception of the patient, but also on objective data that measures the evolution of neuronal activity. We will discuss different objective and subjective methods for the characterization of neuropathic pain. Additionally, the gaps and proposals for an integral management of chronic neuropathic pain will also be discussed. The current management that relies mostly on subjective measures has not been sufficient, therefore, this has hindered advances in pain management and clinical trials. If an integral characterization is achieved, clinical management and stratification for clinical trials could be based on both questionnaires and neuronal activity. Appropriate characterization may lead to an increased effectiveness for new therapies, and a better quality of life for neuropathic pain sufferers.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, México; Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | | | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Puebla 72453, Puebla, México
| |
Collapse
|
9
|
Assessing the specificity of the relationship between brain alpha oscillations and tonic pain. Neuroimage 2022; 255:119143. [PMID: 35378288 DOI: 10.1016/j.neuroimage.2022.119143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Recent research proposed that the slowing of individual alpha frequency (IAF) could be an objective marker of pain. However, it is unclear whether this research can fully address the requirements of specificity and sensitivity of IAF to the pain experience. Here, we sought to develop a robust methodology for assessing the specificity of the relationship between alpha oscillations and acute tonic pain in healthy individuals. We recorded electroencephalography (EEG) of 36 volunteers during consecutive 5-minute sessions of painful hot water immersion, innocuous warm water immersion and aversive, non-painful auditory stimulus, matched by unpleasantness to the painful condition. Participants rated stimulus unpleasantness throughout each condition. We isolated two regions of the scalp displaying peak alpha activity across participants: centro-parietal (CP) and parieto-occipital (PO) ROI. In line with previous research our findings revealed decreased IAF during hot compared with warm stimulation, however the effect was not specific for pain as we found no difference between hot and sound in the CP ROI (compared to baseline). In contrast, the PO ROI reported the same pattern of differences, but their direction was opposite to the CP in that this ROI revealed faster frequency during hot condition than controls. Finally, we show that IAF in both ROIs did not mediate the relationship between the experimental manipulation and the affective experience. Altogether, these findings emphasize the importance of a robust methodological and analytical design to disclose the functional role of alpha oscillations during affective processing. Likewise, they suggest the absence of a causal role of IAF in the generation of acute pain experience in healthy individuals.
Collapse
|
10
|
Savignac C, Ocay DD, Mahdid Y, Blain-Moraes S, Ferland CE. Clinical use of Electroencephalography in the Assessment of Acute Thermal Pain: A Narrative Review Based on Articles From 2009 to 2019. Clin EEG Neurosci 2022; 53:124-132. [PMID: 34133245 DOI: 10.1177/15500594211026280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nowadays, no practical system has successfully been able to decode and predict pain in clinical settings. The inability of some patients to verbally express their pain creates the need for a tool that could objectively assess pain in these individuals. Neuroimaging techniques combined with machine learning are seen as possible candidates for the identification of pain biomarkers. This review aimed to address the potential use of electroencephalographic features as predictors of acute experimental pain. Twenty-six studies using only thermal stimulations were identified using a PubMed and Scopus search. Combinations of the following terms were used: "EEG," "Electroencephalography," "Acute," "Pain," "Tonic," "Noxious," "Thermal," "Stimulation," "Brain," "Activity," "Cold," "Subjective," and "Perception." Results revealed that contact-heat-evoked potentials have been widely recorded over central areas during noxious heat stimulations. Furthermore, a decrease in alpha power over central regions was revealed, as well as increased theta and gamma powers over frontal areas. Gamma and theta rhythms were associated with connectivity between sensory and affective regions involved in pain processing. A machine learning analysis revealed that the gamma band is a predominant predictor of acute thermal pain. This review also addressed the need of supplementing current spectral features with techniques that allow the investigation of network dynamics.
Collapse
Affiliation(s)
- Chloé Savignac
- 5620McGill University, Montreal, Quebec, Canada.,70357Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
| | - Don Daniel Ocay
- 5620McGill University, Montreal, Quebec, Canada.,70357Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
| | | | | | - Catherine E Ferland
- 5620McGill University, Montreal, Quebec, Canada.,70357Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada.,Research Institute-McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Modares-Haghighi P, Boostani R, Nami M, Sanei S. Quantification of pain severity using EEG-based functional connectivity. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG). Neural Plast 2021; 2021:8537437. [PMID: 34306064 PMCID: PMC8266462 DOI: 10.1155/2021/8537437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity (R = -0.50, P = 0.01), with the strongest correlation occurring at the Cz electrode (R = -0.59, P = 0.04). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.
Collapse
|
13
|
Peng W, Lou W, Huang X, Ye Q, Tong RKY, Cui F. Suffer together, bond together: Brain-to-brain synchronization and mutual affective empathy when sharing painful experiences. Neuroimage 2021; 238:118249. [PMID: 34116146 DOI: 10.1016/j.neuroimage.2021.118249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Previous behavioral studies have shown that sharing painful experiences can strengthen social bonds and promote mutual prosociality, yet the neural mechanisms underlying this phenomenon remain unclear. We hypothesized that sharing a painful experience induces brain-to-brain synchronization and mutual empathy for each other's pain between pain-takers and pain-observers, which then leads to enhanced social bonding. To test this hypothesis, we adopted an electroencephalographic (EEG) hyper-scanning technique to assess neuronal and behavioral activity during a Pain-Sharing task in which high- or low-intensity pain stimulation was randomly delivered to one participant of a dyad on different experimental trials. Single-brain analysis showed that sensorimotor α-oscillation power was suppressed more when expecting high-intensity pain than when expecting low-intensity pain similarly for self-directed or partner-directed pain. Dual-brain analysis revealed that expecting high-intensity pain induced greater brain-to-brain synchronization of sensorimotor α-oscillation phases between pain-takers and pain-observers than did expecting low-intensity pain. Mediation analysis further revealed that brain-to-brain synchronization of sensorimotor α-oscillations mediated the effects of pain-stimulation intensity on mutual affective sharing for partner-directed pain. This mutual affective empathy during the task predicted the social bonding, as indexed by prosocial inclinations measured after the task. These results support the hypothesis that sharing a painful experience triggers emotional resonance between pairs of individuals through brain-to-brain synchronization of neuronal α-oscillations recorded over the sensorimotor cortex, and this emotional resonance further strengthens social bonds and motivates prosocial behavior within pairs of individuals.
Collapse
Affiliation(s)
- Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoxuan Huang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Qian Ye
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Cui
- School of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
De Pascalis V, Scacchia P, Vecchio A. Influences of hypnotic suggestibility, contextual factors, and EEG alpha on placebo analgesia. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2021; 63:302-328. [PMID: 33999775 DOI: 10.1080/00029157.2020.1863182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We tested the role of hypnotic suggestibility, involuntariness, pain expectation, and subjective hypnotic depth in the prediction of placebo analgesia (PA) responsiveness. We also tested the link of lower and upper alpha sub-band (i.e., 'alpha1' and 'alpha2') power changes with tonic PA responding during waking and hypnosis conditions. Following an initial PA manipulation condition, we recorded EEG activity during waking and hypnosis under two treatments: (1) painful stimulation (Pain); (2) painful stimulation after application of a PA cream. Alpha1 and alpha2 power were derived using the individual alpha frequency method. We found that (1) PA in both waking and hypnosis conditions significantly reduced relative pain perception; (2) during waking, all the above mentioned contextual measures were associated with pain reduction, while involuntariness alone was associated with pain reduction within hypnosis. Enhanced alpha2 power at the left-parietal lead was solely associated with pain reduction in waking, but not in hypnosis condition. Using multiple regression and mediation analyses we found that: (i) during waking, the enhancement of relative left-parietal alpha2 power, directly influenced the enhancement in pain reduction, and, indirectly, through the mediating positive effect of involuntariness; (j) during hypnosis, the enhancement of left-temporoparietal alpha2 power, through the mediation of involuntariness, influenced pain reduction. Current findings obtained during waking suggest that enhanced alpha2 power may serve as a direct-objective measure of the subjective reduction of tonic pain in response to PA treatment. Overall, our findings suggest that placebo analgesia during waking and hypnosis involves different processes of top-down regulation.
Collapse
|
15
|
Thomaidou MA, Peerdeman KJ, Koppeschaar MI, Evers AWM, Veldhuijzen DS. How Negative Experience Influences the Brain: A Comprehensive Review of the Neurobiological Underpinnings of Nocebo Hyperalgesia. Front Neurosci 2021; 15:652552. [PMID: 33841092 PMCID: PMC8024470 DOI: 10.3389/fnins.2021.652552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
This comprehensive review summarizes and interprets the neurobiological correlates of nocebo hyperalgesia in healthy humans. Nocebo hyperalgesia refers to increased pain sensitivity resulting from negative experiences and is thought to be an important variable influencing the experience of pain in healthy and patient populations. The young nocebo field has employed various methods to unravel the complex neurobiology of this phenomenon and has yielded diverse results. To comprehend and utilize current knowledge, an up-to-date, complete review of this literature is necessary. PubMed and PsychInfo databases were searched to identify studies examining nocebo hyperalgesia while utilizing neurobiological measures. The final selection included 22 articles. Electrophysiological findings pointed toward the involvement of cognitive-affective processes, e.g., modulation of alpha and gamma oscillatory activity and P2 component. Findings were not consistent on whether anxiety-related biochemicals such as cortisol plays a role in nocebo hyperalgesia but showed an involvement of the cyclooxygenase-prostaglandin pathway, endogenous opioids, and dopamine. Structural and functional neuroimaging findings demonstrated that nocebo hyperalgesia amplified pain signals in the spinal cord and brain regions involved in sensory and cognitive-affective processing including the prefrontal cortex, insula, amygdala, and hippocampus. These findings are an important step toward identifying the neurobiological mechanisms through which nocebo effects may exacerbate pain. Results from the studies reviewed are discussed in relation to cognitive-affective and physiological processes involved in nocebo and pain. One major limitation arising from this review is the inconsistency in methods and results in the nocebo field. Yet, while current findings are diverse and lack replication, methodological differences are able to inform our understanding of the results. We provide insights into the complexities and involvement of neurobiological processes in nocebo hyperalgesia and call for more consistency and replication studies. By summarizing and interpreting the challenging and complex neurobiological nocebo studies this review contributes, not only to our understanding of the mechanisms through which nocebo effects exacerbate pain, but also to our understanding of current shortcomings in this field of neurobiological research.
Collapse
Affiliation(s)
- Mia A. Thomaidou
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Kaya J. Peerdeman
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | | | - Andrea W. M. Evers
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
- Medical Delta Healthy Society, Leiden University, Technical University Delft, & Erasmus UniversityRotterdam, Netherlands
- Department of Psychiatry, Leiden University Medical Centre, Leiden, Netherlands
| | - Dieuwke S. Veldhuijzen
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
16
|
Chouchou F, Perchet C, Garcia-Larrea L. EEG changes reflecting pain: is alpha suppression better than gamma enhancement? Neurophysiol Clin 2021; 51:209-218. [PMID: 33741256 DOI: 10.1016/j.neucli.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Suppression of alpha and enhancement of gamma electroencephalographic (EEG) power have both been suggested as objective indicators of cortical pain processing. While gamma activity has been emphasized as the best potential marker, its spectral overlap with pain-related muscular responses is a potential drawback. Since muscle contractions are almost universal concomitants of physical pain, here we investigated alpha and gamma scalp-recorded activities during either tonic pain or voluntary facial grimaces mimicking those triggered by pain. METHODS High-density EEG (128 electrodes) was recorded while 14 healthy participants either underwent a cold pressor test (painful hand immersion in 10 °C water) or produced stereotyped facial/nuchal contractions (grimaces) mimicking those evoked by pain. The scalp distribution of spectral EEG changes was quantified via vector-transformation of maps and compared between the pain and grimacing conditions by calculating the cosine of the angle between the two corresponding topographies. RESULTS Painful stimuli significantly enhanced gamma power bilaterally in fronto-temporal regions and decreased alpha power in the contralateral central scalp. Sustained cervico-facial contractions (grimaces) gave also rise to significant gamma power increase in fronto-temporal regions but did not decrease central scalp alpha. While changes in alpha topography significantly differed between the pain and grimace situations, the scalp topography of gamma power was statistically indistinguishable from that occurring during grimaces. CONCLUSION Gamma power induced by painful stimuli or voluntary facial-cervical muscle contractions had overlapping topography. Pain-related alpha decrease in contralateral central scalp was less disturbed by muscle activity and may therefore prove more discriminant as an ancillary pain biomarker.
Collapse
Affiliation(s)
- Florian Chouchou
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France; IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion, Le Tampon, France.
| | - Caroline Perchet
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France
| | - Luis Garcia-Larrea
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France
| |
Collapse
|
17
|
Song Y, Yao M, Kemprecos H, Byrne A, Xiao Z, Zhang Q, Singh A, Wang J, Chen ZS. Predictive coding models for pain perception. J Comput Neurosci 2021; 49:107-127. [PMID: 33595765 DOI: 10.1007/s10827-021-00780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.
Collapse
Affiliation(s)
- Yuru Song
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Department of Biology, University of California, San Diego, USA
| | - Mingchen Yao
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Helen Kemprecos
- Department of Biochemistry, New York University, New York, USA
| | - Aine Byrne
- Center for Neural Science, New York University, New York, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Amrita Singh
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Jing Wang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA.,Neuroscience Institute, New York University School of Medicine, New York, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, USA. .,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA. .,Neuroscience Institute, New York University School of Medicine, New York, USA.
| |
Collapse
|
18
|
Wu YL, Fang SC, Chen SC, Tai CJ, Tsai PS. Effects of Neurofeedback on Fibromyalgia: A Randomized Controlled Trial. Pain Manag Nurs 2021; 22:755-763. [PMID: 33579615 DOI: 10.1016/j.pmn.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/02/2020] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fibromyalgia is a chronic widespread pain condition that is associated with sleep disturbances and cognitive impairments. Neurofeedback has been demonstrated to improve pain, sleep quality, and fatigue. However, few studies have examined the effect of neurofeedback for patients with fibromyalgia. AIM To determine the effects of neurofeedback on pain intensity, symptom severity, sleep quality, and cognitive function in patients with fibromyalgia. DESIGN This study was a randomized controlled trial. METHOD Eighty participants were randomized to a neurofeedback group (N = 60), receiving sensorimotor and alpha rhythm feedback for 8 weeks, or a telephone support group (N = 20). RESULTS Results from the generalized estimating equation modelling revealed significant group-by-time interactions for Brief Pain Inventory pain severity (B = -1.35, SE = 0.46, p = .003) and pain interference (B = -1.75, SE = 0.41, p < .001), Revised Fibromyalgia Impact Questionnaire total scores (B = -16.41, SE = 3.76, p < .001), sleep onset latency (B = -25.33, SE = 9.02, p = .005), and Psychomotor Vigilance Test error (B = -1.38, SE = 0.55, p = .013) after adjustments for age, sex, duration of illness, and group differences at baseline. CONCLUSIONS An 8-week neurofeedback training regimen of sensorimotor rhythm and alpha brain waves significantly improved pain severity and interference, fibromyalgia symptom severity, sleep latency, and sustained attention in patients with fibromyalgia.
Collapse
Affiliation(s)
- Yu-Lin Wu
- St. Mary's Medicine, Nursing and Management College, Yilan, Taiwan; School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Su-Chen Fang
- Department of Nursing, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chen-Jei Tai
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Shan Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Sleep Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Could cathodal transcranial direct current stimulation modulate the power spectral density of alpha-band in migrainous occipital lobe? Neurosci Lett 2020; 742:135539. [PMID: 33278504 DOI: 10.1016/j.neulet.2020.135539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To identify the correlation between cathodal transcranial direct current stimulation (tDCS) and the power spectral density (PSD) of alpha-band on the occipital lobe of migraineurs. METHODS Firstly, a cross-sectional study was performed to compare the PSD of alpha-band in the occipital cortex of 25 migraineurs versus 10 healthy volunteers in resting state and during repetitive light stimuli (RLS). Secondly, the patients participated in 12 sessions of cathodal (n = 11) or sham tDCS (n = 10) over the primary visual cortex (V1) to investigate the alpha-band PSD. RESULTS The alpha-band PSD on the occipital cortex was higher in migraineurs than healthy subjects in resting state and lower during the first train of RLS. Cathodal tDCS over the V1 reduced the alpha-band occipital activity in resting state but did not interfere with the functional responses to RLS when light stimulation was turned on. CONCLUSIONS Our findings suggest that the occipital cortex of migraineurs is hypoactive in the baseline condition, but becomes hyperactive when stimulated by light. Cathodal tDCS over the V1 decreases baseline alpha PSD in patients, possibly modulating the involved neuronal circuitries, but it cannot interfere once photic stimulation starts.
Collapse
|
20
|
Wang WE, Ho RLM, Ribeiro-Dasilva MC, Fillingim RB, Coombes SA. Chronic jaw pain attenuates neural oscillations during motor-evoked pain. Brain Res 2020; 1748:147085. [PMID: 32898506 DOI: 10.1016/j.brainres.2020.147085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022]
Abstract
Motor- and pain-related processes separately induce a reduction in alpha and beta power. When movement and pain occur simultaneously but are independent of each other, the effects on alpha and beta power are additive. It is not clear whether this additive effect is evident during motor-evoked pain in individuals with chronic pain. We combined highdensity electroencephalography (EEG) with a paradigm in which motor-evoked pain was induced during a jaw force task. Participants with chronic jaw pain and pain-free controls produced jaw force at 2% and 15% of their maximum voluntary contraction. The chronic jaw pain group showed exacerbated motor-evoked pain as force amplitude increased and showed increased motor variability and motor error irrespective of force amplitude. The chronic jaw pain group had an attenuated decrease in power in alpha and lower-beta frequencies in the occipital cortex during the anticipation and experience of motor-evoked pain. Rather than being additive, motor-evoked pain attenuated the modulation of alpha and beta power, and this was most evident in occipital cortex. Our findings provide the first evidence of changes in neural oscillations in the cortex during motor-evoked jaw pain.
Collapse
Affiliation(s)
- Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rachel L M Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Baroni A, Severini G, Straudi S, Buja S, Borsato S, Basaglia N. Hyperalgesia and Central Sensitization in Subjects With Chronic Orofacial Pain: Analysis of Pain Thresholds and EEG Biomarkers. Front Neurosci 2020; 14:552650. [PMID: 33281540 PMCID: PMC7689025 DOI: 10.3389/fnins.2020.552650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: The presence of a temporomandibular disorder is one of the most frequent causes of orofacial pain (OFP). When pain continues beyond tissue healing time, it becomes chronic and may be caused, among other factors, by the sensitization of higher-order neurons. The aim of this study is to describe psychological characteristics of patients with chronic OFP, their peripheral pain threshold, and electroencephalography (EEG) recording, looking for possible signs of central sensitization (CS). Materials and methods: Twenty-four subjects with chronic OFP caused by temporomandibular disorder were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders Axis I and Axis II. Pain intensity, catastrophizing, and presence of CS were assessed through self-reported questionnaires. Pressure pain threshold (PPT) was recorded in facial and peripheral sites; EEG activity was recorded during open and closed eyes resting state and also during the pain threshold assessment. Pain thresholds and EEG recordings were compared with a cohort of pain-free age- and sex-matched healthy subjects. Results: Patients with chronic OFP showed a significant reduction in their pain threshold compared to healthy subjects in all sites assessed. Greater reduction in pain threshold was recorded in patients with more severe psychological symptoms. Decreased alpha and increased gamma activity was recorded in central and frontal regions of all subjects, although no significant differences were observed between groups. Discussion: A general reduction in PPT was recorded in people who suffer from chronic OFP. This result may be explained by sensitization of the central nervous system due to chronic pain conditions. Abnormal EEG activity was recorded during painful stimulation compared to the relaxed condition in both chronic OFP subjects and healthy controls.
Collapse
Affiliation(s)
- Andrea Baroni
- Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland.,Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Sergio Buja
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Silvia Borsato
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Fang H, Li X, Wu Y, Peng W. Single dose testosterone administration modulates the temporal dynamics of distractor processing. Psychoneuroendocrinology 2020; 121:104838. [PMID: 32871336 DOI: 10.1016/j.psyneuen.2020.104838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Abstract
Some evidence suggests that testosterone can increase attentional orientation toward biologically relevant stimuli and increase sustained attention during goal-oriented behaviors. While rare irregular distractors often capture attention involuntarily and distract us away from the task at hand, we hypothesized that testosterone might (1) facilitate attentional orientation to novel distractors that are of potential behavioral relevance and (2) inhibit information processing of distractors that are irrelevant to the task. To test this hypothesis, we investigated the effects of testosterone on distractor processing in a novelty oddball task, during which infrequent target and distractor sounds were interspersed within a series of frequent non-target sounds. Using a double-blind, placebo-controlled within-participant design, we administered a single dose of either testosterone or placebo to 34 healthy male volunteers and compared their electroencephalographic responses to distractors. Increased amplitude of the early (260-310 ms) P3 component-which has been associated with phasic arousal and alertness triggered by novel stimuli-was observed in the testosterone session than in the placebo session. This early-P3 response mediated the effect of testosterone administration on target hit rate during the task. In addition, less α-oscillation suppression-which has been associated with the inhibition of task-irrelevant information processing-was observed in response to distractors later (538-757 ms) in the testosterone session than in the placebo session. These results suggest that testosterone facilitated phasic arousal to novel distractors during the early-latency stage, which might have influenced behavioral performance during the task. Furthermore, testosterone inhibited task-irrelevant information processing during the late-latency stage, which allowed better reorientation of attention back to the primary task. Our findings highlight the role of testosterone in distractor processing, and provide a theoretical basis for treating attention-related behavioral disorders with hormone therapies.
Collapse
Affiliation(s)
- Huihua Fang
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, Guangdong, China; Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Yin Wu
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Peng W, Zhan Y, Jiang Y, Nan W, Kadosh RC, Wan F. Individual variation in alpha neurofeedback training efficacy predicts pain modulation. NEUROIMAGE-CLINICAL 2020; 28:102454. [PMID: 33065472 PMCID: PMC7566954 DOI: 10.1016/j.nicl.2020.102454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/29/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022]
Abstract
Sensorimotor alpha neurofeedback training effect on pain perception was assessed. Neurofeedback training decreased the sensory-discriminative aspect of pain. Neurofeedback training increased the affective-motivational aspect of pain. Pain modulation by neurofeedback training was dependent upon the training efficacy. Neurofeedback training efficacy predicted sensory-discriminative pain modulation.
Studies have shown an association between sensorimotor α-oscillation and pain perception. It suggests the potential use of neurofeedback (NFB) training for pain modulation through modifying sensorimotor α-oscillation. Here, a single-session NFB training protocol targeted on increasing sensorimotor α-oscillations was applied to forty-five healthy participants. Pain thresholds to nociceptive laser stimulations and pain ratings (intensity and unpleasantness) to identical laser painful stimulations were assessed immediately before and after NFB training. Participants had larger pain thresholds, but rated the identical painful laser stimulation as more unpleasant after NFB training. These pain measurements were further compared between participants with high or low NFB training efficacy that was quantified as the regression slope of α-oscillation throughout the ten training blocks. A significant increase in pain thresholds was observed among participants with high-efficacy; whereas a significant increase in pain ratings was observed among participants with low-efficacy. These results suggested that NFB training decreased the sensory-discriminative aspect of pain, but increased the affective-motivational aspect of pain, whereas both pain modulations were dependent upon the NFB training efficacy. Importantly, correlation analysis across all participants revealed that a greater NFB training efficacy predicted a greater increase in pain thresholds particularly at hand contralateral to NFB target site, but no significant correlation was observed between NFB training efficacy and modulation on pain ratings. It thus provided causal evidence for a link between sensorimotor α-oscillation and the sensory-discriminative aspect of pain, and highlighted the need for personalized neurofeedback for the benefits on pain modulation at the individual level. Future studies can adopt a double-blind sham-controlled protocol to validate NFB training induced pain modulation.
Collapse
Affiliation(s)
- Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, Guangdong, China
| | - Yilin Zhan
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Yali Jiang
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai, China.
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| |
Collapse
|
24
|
Zarei SP, Briscese L, Capitani S, Rossi B, Carboncini MC, Santarcangelo EL, Motie Nasrabadi A. Hypnotizability-Related Effects of Pain Expectation on the Later Modulation of Cortical Connectivity. Int J Clin Exp Hypn 2020; 68:306-326. [PMID: 32510271 DOI: 10.1080/00207144.2020.1762196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study examined hypnotizability-related modulation of the cortical network following expected and nonexpected nociceptive stimulation. The electroencephalogram (EEG) was recorded in 9 high (highs) and 8 low (lows) hypnotizable participants receiving nociceptive stimulation with (W1) and without (noW) a visual warning preceding the stimulation by 1 second. W1 and noW were compared to baseline conditions to assess the presence of any later effect and between each other to assess the effects of expectation. The studied EEG variables measured local and global features of the cortical connectivity. With respect to lows, highs exhibited scarce differences between experimental conditions. The hypnotizability-related differences in the later processing of nociceptive information could be relevant to the development of pain-related individual traits. Present findings suggest a lower impact of nociceptive stimulation in highs than in lows.
Collapse
Affiliation(s)
| | - Lucia Briscese
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Simone Capitani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Bruno Rossi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Maria C Carboncini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | - Enrica L Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa , Italy
| | | |
Collapse
|
25
|
Song Y, Kemprecos H, Wang J, Chen Z. A Predictive Coding Model for Evoked and Spontaneous Pain Perception. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2964-2967. [PMID: 31946512 DOI: 10.1109/embc.2019.8857298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pain is a complex multidimensional experience, and pain perception is still incompletely understood. Here we combine animal behavior, electrophysiology, and computer modeling to dissect mechanisms of evoked and spontaneous pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) of freely behaving rats during pain episodes, and develop a predictive coding model to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Our preliminary results from computational simulations support the experimental findings and provide new predictions.
Collapse
|
26
|
Wang WE, Roy A, Misra G, Ho RLM, Ribeiro-Dasilva MC, Fillingim RB, Coombes SA. Altered neural oscillations within and between sensorimotor cortex and parietal cortex in chronic jaw pain. NEUROIMAGE-CLINICAL 2019; 24:101964. [PMID: 31412309 PMCID: PMC6704052 DOI: 10.1016/j.nicl.2019.101964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
Pain perception is associated with priming of the motor system and the orienting of attention in healthy adults. These processes correspond with decreases in alpha and beta power in the sensorimotor and parietal cortices. The goal of the present study was to determine whether these findings extend to individuals with chronic pain. Individuals with chronic jaw pain and pain-free controls anticipated and experienced a low pain or a moderate pain-eliciting heat stimulus. Although stimuli were calibrated for each subject, stimulus temperature was not different between groups. High-density EEG data were collected during the anticipation and heat stimulation periods and were analyzed using independent component analyses, EEG source localization, and measure projection analyses. Direct directed transfer function was also estimated to identify frequency specific effective connectivity between regions. Between group differences were most evident during the heat stimulation period. We report three novel findings. First, the chronic jaw pain group had a relative increase in alpha and beta power and a relative decrease in theta and gamma power in sensorimotor cortex. Second, the chronic jaw pain group had a relative increase in power in the alpha and beta bands in parietal cortex. Third, the chronic jaw pain group had less connectivity strength in the beta and gamma bands between sensorimotor cortex and parietal cortex. Our findings show that the effect of chronic pain attenuates rather than magnifies neural responses to heat stimuli. We interpret these findings in the context of system-level changes in intrinsic sensorimotor and attentional circuits in chronic pain.
Collapse
Affiliation(s)
- Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Arnab Roy
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | | | - Rachel L M Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | | | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States of America
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
27
|
Hyperexcitability of Cortical Oscillations in Patients with Somatoform Pain Disorder: A Resting-State EEG Study. Neural Plast 2019; 2019:2687150. [PMID: 31360161 PMCID: PMC6652032 DOI: 10.1155/2019/2687150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 01/21/2023] Open
Abstract
Patients with somatoform pain disorder (SPD) suffer from somatic pain that cannot be fully explained by specific somatic pathology. While the pain experience requires the integration of sensory and contextual processes, the cortical oscillations have been suggested to play a crucial role in pain processing and integration. The present study is aimed at identifying the abnormalities of spontaneous cortical oscillations among patients with SPD, thus for a better understanding of the ongoing brain states in these patients. Spontaneous electroencephalography data during a resting state with eyes open were recorded from SPD patients and healthy controls, and their cortical oscillations as well as functional connectivity were compared using both electrode-level and source-level analysis. Compared with healthy controls, SPD patients exhibited greater resting-state alpha oscillations (8.5-12.5 Hz) at the parietal region, as reflected by both electrode-level spectral power density and exact low-resolution brain electromagnetic tomography (eLORETA) cortical current density. A significant correlation between parietal alpha oscillation and somatization severity was observed in SPD patients, after accounting for the influence of anxiety and depression. Functional connectivity analysis further revealed a greater frontoparietal connectivity of the resting-state alpha oscillations in SPD patients, which was indexed by the coherence between pairs of electrodes and the linear connectivity between pairs of eLORETA cortical sources. The enhanced resting-state alpha oscillation in SPD patients could be relevant with attenuated sensory information gating and excessive integration of pain-related information, while the enhanced frontoparietal connectivity could be reflecting their sustained attention to bodily sensations and hypervigilance to somatic sensations.
Collapse
|
28
|
Effects of Electroacupuncture on Pain Memory-Related Behaviors and Synchronous Neural Oscillations in the Rostral Anterior Cingulate Cortex in Freely Moving Rats. Neural Plast 2019; 2019:2057308. [PMID: 31223307 PMCID: PMC6541966 DOI: 10.1155/2019/2057308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Our previous studies have confirmed that electroacupuncture (EA) can effectively intervene in pain memory, but the neural mechanism involved remains unclear. In this study, we observed the effects of EA in regulating pain memory-related behaviors and synchronous neural oscillations in the rostral anterior cingulate cortex (rACC). During nociceptive behavioral testing, pain memory induced a nonpain stimulus that spurred a neural oscillatory reaction similar to that caused by pain stimuli in the rACC. After EA, nonpain stimuli did not induce decreased neural oscillatory activity in the rACC until the presentation of pain stimuli. During aversive behavioral testing, EA, through the downregulation of theta power, inhibited the retrieval of aversive memory and relieved pain memory-induced aversive behaviors. These changes of oscillatory activity may be the hallmarks of EA therapy for pain memory.
Collapse
|
29
|
Huang G, Liu J, Li L, Zhang L, Zeng Y, Ren L, Ye S, Zhang Z. A novel training-free externally-regulated neurofeedback (ER-NF) system using phase-guided visual stimulation for alpha modulation. Neuroimage 2019; 189:688-699. [PMID: 30711469 DOI: 10.1016/j.neuroimage.2019.01.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
The efficacy of neurofeedback is a point of great controversy, because a certain proportion of users cannot properly regulate their brain activities and thereby fail to benefit from neurofeedback. To address the neurofeedback inefficacy problem, the present study is aimed to design and implement a new neurofeedback system that can more effectively and consistently regulate users' brain activities than the conventional way of training users to voluntarily regulate brain activities. The new neurofeedback system delivers external visual stimuli continuously at a specific alpha phase, which is real-time decoded from ongoing alpha wave, to regulate the alpha wave. Experimental results show that the proposed training-free externally-regulated neurofeedback (ER-NF) system can achieve consistent (effective in almost all sessions for almost all users), flexible (either increasing or decreasing peak alpha frequency and alpha power), and immediate (taking or losing effect immediately after stimulation is on or off) modulation effects on alpha wave. Therefore, the ER-NF system holds great potential to be able to more reliably and flexibly modulate cognition and behavior.
Collapse
Affiliation(s)
- Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, 518060, China
| | - Jia Liu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, 518060, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, 518060, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, 518060, China
| | - Yixuan Zeng
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518029, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518029, China
| | - Shiqing Ye
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, 518060, China.
| |
Collapse
|
30
|
Joyal CC, Neveu SM, Boukhalfi T, Jackson PL, Renaud P. Suppression of Sensorimotor Alpha Power Associated With Pain Expressed by an Avatar: A Preliminary EEG Study. Front Hum Neurosci 2018; 12:273. [PMID: 30038564 PMCID: PMC6046452 DOI: 10.3389/fnhum.2018.00273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/13/2018] [Indexed: 12/01/2022] Open
Abstract
Several studies using functional magnetic resonance imaging (fMRI) showed that empathic capabilities are associated with the activation (and deactivation) of relatively specific neural circuits. A growing number of electroencephalography studies also suggest that it might be useful to assess empathy. The main goal of this study was to use quantitative electroencephalography (qEEG) to test whether observation of pain expressed by an avatar (virtual reality) induces a suppression of alpha waves over sensorimotor cortical areas, as it is observed with human stimuli. Not only was it the case, but also the magnitude of alpha suppression was correlated with perspective-taking capacity of participants. Both empathy levels and magnitude of sensorimotor alpha suppression (SAS) were significantly higher in women than men. Interestingly, a significant interaction emerged between levels of individual empathy and specificity of experimental instructions, where SAS in participants with good perspective-taking was higher during passive observation of the distressed avatar, while the opposite was true during an active (trying to understand) condition. These results suggest that: (1) synthetic characters are able to elicit SAS; (2) SAS is indeed associated with perspective-taking capacities; (3) Persons with poorer perspective-taking capacities can show significant SAS when proper instructions are provided. Therefore, qEEG represents a low-cost objective approach to measure perspective-taking abilities.
Collapse
Affiliation(s)
- Christian C Joyal
- Laboratory of Virtual Reality Applications in Psychiatry (ARVIPL), Research Center, Philippe-Pinel Institute of Montreal, Montreal, QC, Canada.,Cognition, Neuroscience, Affect and Behavior Research Group (CogNAC), Psychology Department, University of Quebec at Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sarah-Michelle Neveu
- Laboratory of Virtual Reality Applications in Psychiatry (ARVIPL), Research Center, Philippe-Pinel Institute of Montreal, Montreal, QC, Canada
| | - Tarik Boukhalfi
- Laboratory of Virtual Reality Applications in Psychiatry (ARVIPL), Research Center, Philippe-Pinel Institute of Montreal, Montreal, QC, Canada
| | - Philip L Jackson
- Psychology Department, University Mental Health Institute of Quebec (CRIUSMQ) and Laval University, Quebec, QC, Canada
| | - Patrice Renaud
- Laboratory of Virtual Reality Applications in Psychiatry (ARVIPL), Research Center, Philippe-Pinel Institute of Montreal, Montreal, QC, Canada.,Psychology Department, University of Quebec in Outaouais, Gatineau, QC, Canada
| |
Collapse
|
31
|
Furman AJ, Meeker TJ, Rietschel JC, Yoo S, Muthulingam J, Prokhorenko M, Keaser ML, Goodman RN, Mazaheri A, Seminowicz DA. Cerebral peak alpha frequency predicts individual differences in pain sensitivity. Neuroimage 2017; 167:203-210. [PMID: 29175204 DOI: 10.1016/j.neuroimage.2017.11.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022] Open
Abstract
The identification of neurobiological markers that predict individual predisposition to pain are not only important for development of effective pain treatments, but would also yield a more complete understanding of how pain is implemented in the brain. In the current study using electroencephalography (EEG), we investigated the relationship between the peak frequency of alpha activity over sensorimotor cortex and pain intensity during capsaicin-heat pain (C-HP), a prolonged pain model known to induce spinal central sensitization in primates. We found that peak alpha frequency (PAF) recorded during a pain-free period preceding the induction of prolonged pain correlated with subsequent pain intensity reports: slower peak frequency at pain-free state was associated with higher pain during the prolonged pain condition. Moreover, the degree to which PAF decreased between pain-free and prolonged pain states was correlated with pain intensity. These two metrics were statistically uncorrelated and in combination were able to account for 50% of the variability in pain intensity. Altogether, our findings suggest that pain-free state PAF over relevant sensory systems could serve as a marker of individual predisposition to prolonged pain. Moreover, slowing of PAF in response to prolonged pain could represent an objective marker for subjective pain intensity. Our findings potentially lead the way for investigations in clinical populations in which alpha oscillations and the brain areas contributing to their generation are used in identifying and formulating treatment strategies for patients more likely to develop chronic pain.
Collapse
Affiliation(s)
- Andrew J Furman
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States
| | - Timothy J Meeker
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States
| | - Jeremy C Rietschel
- Maryland Exercise and Robotics Center of Excellence, Veterans Health Administration, Baltimore, MD, United States
| | - Sooyoung Yoo
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States
| | - Janusiya Muthulingam
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States
| | - Mariya Prokhorenko
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States
| | - Ronald N Goodman
- Maryland Exercise and Robotics Center of Excellence, Veterans Health Administration, Baltimore, MD, United States
| | - Ali Mazaheri
- Center for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom.
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States.
| |
Collapse
|
32
|
Zhao K, Tang Z, Wang H, Guo Y, Peng W, Hu L. Analgesia induced by self-initiated electrotactile sensation is mediated by top-down modulations. Psychophysiology 2017; 54:848-856. [PMID: 28169425 DOI: 10.1111/psyp.12839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/30/2016] [Indexed: 11/26/2022]
Abstract
It is well known that sensory perception can be attenuated when sensory stimuli are controlled by self-initiated actions. This phenomenon is explained by the consistency between forward models of anticipated action effects and actual sensory feedback. Specifically, the brain state related to the binding between motor processing and sensory perception would have inhibitory function by gating sensory information via top-down control. Since the brain state could casually influence the perception of subsequent stimuli of different sensory modalities, we hypothesize that pain evoked by nociceptive stimuli following the self-initiated tactile stimulation would be attenuated as compared to that following externally determined tactile stimulation. Here, we compared psychophysical and neurophysiological responses to identical nociceptive-specific laser stimuli in two different conditions: self-initiated tactile sensation condition (STS) and nonself-initiated tactile sensation condition (N-STS). We observed that pain intensity and unpleasantness, as well as laser-evoked brain responses, were significantly reduced in the STS condition compared to the N-STS condition. In addition, magnitudes of alpha and beta oscillations prior to laser onset were significantly larger in the STS condition than in the N-STS condition. These results confirmed that pain perception and pain-related brain responses were attenuated when the tactile stimulation was initiated by subjects' voluntary actions, and exploited neural oscillations reflecting the binding between motor processing and sensory feedback. Thus, our study elaborated the understanding of underlying neural mechanisms related to top-down modulations of the analgesic effect induced by self-initiated tactile sensation, which provided theoretical basis to improve the analgesic effect in various clinical applications.
Collapse
Affiliation(s)
- Ke Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Zhengyu Tang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Huiquan Wang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yifei Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Weiwei Peng
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Hu XS, Fisher CA, Munz SM, Toback RL, Nascimento TD, Bellile EL, Rozek L, Eisbruch A, Worden FP, Danciu TE, DaSilva AF. Feasibility of Non-invasive Brain Modulation for Management of Pain Related to Chemoradiotherapy in Patients with Advanced Head and Neck Cancer. Front Hum Neurosci 2016; 10:466. [PMID: 27729853 PMCID: PMC5037215 DOI: 10.3389/fnhum.2016.00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022] Open
Abstract
Patients with head and neck cancer often experience a significant decrease in their quality of life during chemoradiotherapy (CRT) due to treatment-related pain, which is frequently classified as severe. Transcranial direct current stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. In this pilot study, we investigated the clinical impact and central mechanisms of twenty primary motor cortex (M1) stimulation sessions with tDCS during 7 weeks of CRT for head and neck cancer. From 48 patients screened, seven met the inclusion criteria and were enrolled. Electroencephalography (EEG) data were recorded before and after tDCS stimulation as well as across the trial to monitor short and long-term impact on brain function. The compliance rate during the long trial was extremely high (98.4%), and patients mostly reported mild side effects in line with the literature (e.g., tingling). Compared to a large standard of care study from our institution, our initial results indicate that M1-tDCS stimulation has a pain relief effect during the CRT that resulted in a significant attenuation of weight reduction and dysphagia normally observed in these patients. These results translated to our patient cohort not needing feeding tubes or IV fluids. Power spectra analysis of EEG data indicated significant changes in α, β, and γ bands immediately after tDCS stimulation and, in addition, α, δ, and θ bands over the long term in the seventh stimulation week (p < 0.05). The independent component EEG clustering analysis showed estimated functional brain regions including precuneus and superior frontal gyrus (SFG) in the seventh week of tDCS stimulation. These areas colocalize with our previous positron emission tomography (PET) study where there was activation in the endogenous μ-opioid system during M1-tDCS. This study provides preliminary evidence demonstrating the feasibility and safety of M1-tDCS as a potential adjuvant neuromechanism-driven analgesic therapy for head and neck cancer patients receiving CRT, inducing immediate and long-term changes in the cortical activity and clinical measures, with minimal side-effects.
Collapse
Affiliation(s)
- Xiao-Su Hu
- Headache and Orofacial Pain Effort Lab, School of Dentistry, Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, USA
- Center for Human Growth and Development, University of MichiganAnn Arbor, MI, USA
| | - Clayton A. Fisher
- Headache and Orofacial Pain Effort Lab, School of Dentistry, Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, USA
- Division of Oral Pathology, Department of Periodontics and Oral Medicine, University of MichiganAnn Arbor, MI, USA
| | - Stephanie M. Munz
- Department of Oral and Maxillofacial Surgery/Hospital Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Rebecca L. Toback
- Headache and Orofacial Pain Effort Lab, School of Dentistry, Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, USA
| | - Thiago D. Nascimento
- Headache and Orofacial Pain Effort Lab, School of Dentistry, Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, USA
| | - Emily L. Bellile
- Headache and Orofacial Pain Effort Lab, School of Dentistry, Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, USA
- Biostatistics Department, University of MichiganAnn Arbor, MI, USA
| | - Laura Rozek
- Biostatistics Department, University of MichiganAnn Arbor, MI, USA
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of MichiganAnn Arbor, MI, USA
| | - Francis P. Worden
- Department of Internal Medicine Oncology, University of MichiganAnn Arbor, MI, USA
| | - Theodora E. Danciu
- Division of Oral Pathology, Department of Periodontics and Oral Medicine, University of MichiganAnn Arbor, MI, USA
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort Lab, School of Dentistry, Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, USA
- Center for Human Growth and Development, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|
34
|
Meneses FM, Queirós FC, Montoya P, Miranda JGV, Dubois-Mendes SM, Sá KN, Luz-Santos C, Baptista AF. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest. Front Hum Neurosci 2016; 10:395. [PMID: 27540360 PMCID: PMC4972828 DOI: 10.3389/fnhum.2016.00395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F(1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F(1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F(1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.
Collapse
Affiliation(s)
- Francisco M Meneses
- Graduate Program in Medicine and Health, School of Medicine, Federal University of BahiaSalvador, Brazil; Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil
| | - Fernanda C Queirós
- Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of Bahia Salvador, Brazil
| | - Pedro Montoya
- Department of Psychology, Research Institute of Health Sciences, University of Balearic Islands Palma de Mallorca, Spain
| | - José G V Miranda
- Nucleus of Innovation and Technology in Rehabilitation, Institute of Physics, Federal University of Bahia Salvador, Brazil
| | - Selena M Dubois-Mendes
- Graduate Program in Medicine and Health, School of Medicine, Federal University of BahiaSalvador, Brazil; Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil; Physiotherapy Program, Bahia School of Medicine and Public HealthSalvador, Brazil
| | - Katia N Sá
- Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil; Physiotherapy Program, Bahia School of Medicine and Public HealthSalvador, Brazil
| | - Cleber Luz-Santos
- Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of Bahia Salvador, Brazil
| | - Abrahão F Baptista
- Graduate Program in Medicine and Health, School of Medicine, Federal University of BahiaSalvador, Brazil; Functional Electrostimulation Laboratory, Biomorphology Department, Health Sciences Institute, Federal University of BahiaSalvador, Brazil; Physiotherapy Program, Bahia School of Medicine and Public HealthSalvador, Brazil
| |
Collapse
|
35
|
Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. PLoS One 2016; 11:e0149085. [PMID: 26914356 PMCID: PMC4767709 DOI: 10.1371/journal.pone.0149085] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/27/2016] [Indexed: 01/08/2023] Open
Abstract
The main objective of this study is to review and summarize recent findings on electroencephalographic patterns in individuals with chronic pain. We also discuss recent advances in the use of quantitative Electroencephalography (qEEG) for the assessment of pathophysiology and biopsychosocial factors involved in its maintenance over time. Data collection took place from February 2014 to July 2015 in PubMed, SciELO and PEDro databases. Data from cross-sectional studies and longitudinal studies, as well as clinical trials involving chronic pain participants were incorporated into the final analysis. Our primary findings related to chronic pain were an increase of theta and alpha EEG power at rest, and a decrease in the amplitude of evoked potentials after sensory stimulation and cognitive tasks. This review suggests that qEEG could be considered as a simple and objective tool for the study of brain mechanisms involved in chronic pain, as well as for identifying the specific characteristics of chronic pain condition. In addition, results show that qEEG probably is a relevant outcome measure for assessing changes in therapeutic studies.
Collapse
|