1
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
2
|
Ding Y, Guo R, Lyu W, Zhang W. Gender effect in human-machine communication: a neurophysiological study. Front Hum Neurosci 2024; 18:1376221. [PMID: 39055534 PMCID: PMC11270542 DOI: 10.3389/fnhum.2024.1376221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose This study aimed to investigate the neural mechanism by which virtual chatbots' gender might influence users' usage intention and gender differences in human-machine communication. Approach Event-related potentials (ERPs) and subjective questionnaire methods were used to explore the usage intention of virtual chatbots, and statistical analysis was conducted through repeated measures ANOVA. Results/findings The findings of ERPs revealed that female virtual chatbots, compared to male virtual chatbots, evoked a larger amplitude of P100 and P200, implying a greater allocation of attentional resources toward female virtual chatbots. Considering participants' gender, the gender factors of virtual chatbots continued to influence N100, P100, and P200. Specifically, among female participants, female virtual chatbots induced a larger P100 and P200 amplitude than male virtual chatbots, indicating that female participants exhibited more attentional resources and positive emotions toward same-gender chatbots. Conversely, among male participants, male virtual chatbots induced a larger N100 amplitude than female virtual chatbots, indicating that male participants allocated more attentional resources toward male virtual chatbots. The results of the subjective questionnaire showed that regardless of participants' gender, users have a larger usage intention toward female virtual chatbots than male virtual chatbots. Value Our findings could provide designers with neurophysiological insights into designing better virtual chatbots that cater to users' psychological needs.
Collapse
Affiliation(s)
| | - Ran Guo
- School of Economics and Management, Anhui Polytechnic University, Wuhu, China
| | - Wei Lyu
- School of Economics and Management, Anhui Polytechnic University, Wuhu, China
| | | |
Collapse
|
3
|
Lemire M, Soulières I, Saint-Amour D. The effect of age on executive functions in adults is not sex specific. J Int Neuropsychol Soc 2024; 30:489-498. [PMID: 38221864 DOI: 10.1017/s1355617723011487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Numerous studies have shown a decrease in executive functions (EF) associated with aging. However, few investigations examined whether this decrease is similar between sexes throughout adulthood. The present study investigated if age-related decline in EF differs between men and women from early to late adulthood. METHODS A total of 302 participants (181 women) aged between 18 and 78 years old completed four computer-based cognitive tasks at home: an arrow-based Flanker task, a letter-based Visual search task, the Trail Making Test, and the Corsi task. These tasks measured inhibition, attention, cognitive flexibility, and working memory, respectively. To investigate the potential effects of age, sex, and their interaction on specific EF and a global EF score, we divided the sample population into five age groups (i.e., 18-30, 31-44, 45-54, 55-64, 65-78) and conducted analyses of covariance (MANCOVA and ANCOVA) with education and pointing device as control variables. RESULTS Sex did not significantly affect EF performance across age groups. However, in every task, participants from the three youngest groups (< 55 y/o) outperformed the ones from the two oldest. Results from the global score also suggest that an EF decrease is distinctly noticeable from 55 years old onward. CONCLUSION Our results suggest that age-related decline in EF, including inhibition, attention, cognitive flexibility, and working memory, becomes apparent around the age of 55 and does not differ between sexes at any age. This study provides additional data regarding the effects of age and sex on EF across adulthood, filling a significant gap in the existing literature.
Collapse
Affiliation(s)
- Marilou Lemire
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Isabelle Soulières
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
- CIUSSS NIM Research Center, Hôpital en Santé Mentale Rivière-des-Prairies, Montréal, QC, Canada
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
4
|
Zhu L, Wang Y, Wu Y, Wilson A, Zhou H, Li N, Wang Y. Longitudinal associations between the frequency of playing Mahjong and cognitive functioning among older people in China: evidence from CLHLS, 2008-2018. Front Public Health 2024; 12:1352433. [PMID: 38550318 PMCID: PMC10973127 DOI: 10.3389/fpubh.2024.1352433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/01/2024] [Indexed: 04/02/2024] Open
Abstract
Background Cognitive decline is prevalent among older adults, often resulting in decreased capabilities for self-care and a diminished quality of life. Mahjong, a culturally cherished and extensively played intellectual game in China, demands considerable cognitive function. While the cognitive benefits of playing Mahjong have been widely accepted, this study investigates an under explored aspect and aimed to ascertain the game's potential contributions toward bolstering self-care abilities, enhancing overall quality of life, and mitigating against rising societal healthcare costs. Methods The data analyzed in the study is collected from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) with cognitive functioning being assessed through the Mini-Mental State Examination (MMSE). The frequency of playing Mahjong was measured through a self-reported questionnaire. Multiple linear regression models, latent variable growth models, and cross-lagged models were used to investigate the longitudinal relationship between game frequency and cognitive function in older people. Results Of the 7,535 participants, the mean (SD) age was 81.96 (10.53) years. There were 7,308 (97%), 4,453 (59%), and 1,974 (26%) participants in 2011, 2014, and 2018, respectively. The results showed that Mahjong players had significantly higher MMSE scores compared to non-players from 2008 to 2018 (β = 0.893; p < 0.001), and non-players had significantly lower scores in 2011, 2014, and 2018 than in 2008 (β = -1.326, -0.912, -0.833; Ps > 0.05). Moreover, the frequency of playing Mahjong was associated with improved various cognitive domains. The declining frequency of playing Mahjong was substantially associated with the declining rate of MMSE scores (r = 0.336; p < 0.001). Mahjong frequency showed positive effects on MMSE scores, while the influence of Mahjong on MMSE scores were not significant. Conclusion Playing Mahjong has a positive influence on the cognitive functioning among older people. It can help buffer against the decline in cognitive function and maintain cognitive function levels. The higher frequency of playing Mahjong is associated with improved reaction, attention and calculation, and self-coordination. A decline in the frequency of playing Mahjong was associated with a declining rate of cognitive function. The higher frequency of playing Mahjong among older people unilaterally influenced the improvement of cognitive function levels in older people in China.
Collapse
Affiliation(s)
- Lan Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuju Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Amanda Wilson
- Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Huan Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ningxiu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Musical tempo affects EEG spectral dynamics during subsequent time estimation. Biol Psychol 2023; 178:108517. [PMID: 36801434 DOI: 10.1016/j.biopsycho.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
The perception of time depends on the rhythmicity of internal and external synchronizers. One external synchronizer that affects time estimation is music. This study aimed to analyze the effects of musical tempi on EEG spectral dynamics during subsequent time estimation. Participants performed a time production task after (i) silence and (ii) listening to music at different tempi -90, 120, and 150 bpm- while EEG activity was recorded. While listening, there was an increase in alpha power at all tempi compared to the resting state and an increase of beta at the fastest tempo. The beta increase persisted during the subsequent time estimations, with higher beta power during the task after listening to music at the fastest tempo than task performance without music. Spectral dynamics in frontal regions showed lower alpha activity in the final stages of time estimations after listening to music at 90- and 120-bpm than in the silence condition and higher beta in the early stages at 150 bpm. Behaviorally, the 120 bpm musical tempo produced slight improvements. Listening to music modified tonic EEG activity that subsequently affected EEG dynamics during time production. Music at a more optimal rate could have benefited temporal expectation and anticipation. The fastest musical tempo may have generated an over-activated state that affected subsequent time estimations. These results emphasize the importance of music as an external stimulus that can affect brain functional organization during time perception even after listening.
Collapse
|
6
|
Nawaz R, Wood G, Nisar H, Yap VV. Exploring the Effects of EEG-Based Alpha Neurofeedback on Working Memory Capacity in Healthy Participants. Bioengineering (Basel) 2023; 10:bioengineering10020200. [PMID: 36829694 PMCID: PMC9952280 DOI: 10.3390/bioengineering10020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neurofeedback, an operant conditioning neuromodulation technique, uses information from brain activities in real-time via brain-computer interface (BCI) technology. This technique has been utilized to enhance the cognitive abilities, including working memory performance, of human beings. The aims of this study are to investigate how alpha neurofeedback can improve working memory performance in healthy participants and to explore the underlying neural mechanisms in a working memory task before and after neurofeedback. Thirty-six participants divided into the NFT group and the control group participated in this study. This study was not blinded, and both the participants and the researcher were aware of their group assignments. Increasing power in the alpha EEG band was used as a neurofeedback in the eyes-open condition only in the NFT group. The data were collected before and after neurofeedback while they were performing the N-back memory task (N = 1 and N = 2). Both groups showed improvement in their working memory performance. There was an enhancement in the power of their frontal alpha and beta activities with increased working memory load (i.e., 2-back). The experimental group showed improvements in their functional connections between different brain regions at the theta level. This effect was absent in the control group. Furthermore, brain hemispheric lateralization was found during the N-back task, and there were more intra-hemisphere connections than inter-hemisphere connections of the brain. These results suggest that healthy participants can benefit from neurofeedback and from having their brain networks changed after the training.
Collapse
Affiliation(s)
- Rab Nawaz
- Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Guilherme Wood
- Department of Psychology, University of Graz, Universitaetsplatz 2/III, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Humaira Nisar
- Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Healthcare Science and Technology, Universiti Tunku Abdul Rahman, Sungai Long 31900, Malaysia
- Correspondence:
| | - Vooi Voon Yap
- Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Department of Computer Science, Aberystwyth University, Penglais SY23 3FL, UK
| |
Collapse
|
7
|
Song Y, Lian J, Wang K, Wen J, Luo Y. Changes in the cortical network during sleep stage transitions. J Neurosci Res 2023; 101:20-33. [PMID: 36148534 DOI: 10.1002/jnr.25125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Sleep state transitions are closely related to insomnia, drowsiness, and sleep maintenance. However, how the cortical network varies during such a transition process remains unclear. Changes in the cortical interaction during the short-term process of sleep stage transitions were investigated. In all, 40 healthy young participants underwent overnight polysomnography. The phase transfer entropy of six frequency bands was obtained from 16 electroencephalography channels to assess the strength and direction of information flow between the cortical regions. Differences in the cortical network between the first and the last 10 s in a 40-s transition period across wakefulness, N1, N2, N3, and rapid eye movement were, respectively, studied. Various frequency bands exhibited different patterns during the sleep stage transitions. It was found that the mutual transitions between the sleep stages were not necessarily the opposite. More significant changes were observed in the sleep deepening process than in the process of sleep awakening. During sleep stage transitions, changes in the inflow and outflow strength of various cortical regions led to regional differences, but for the entire sleep progress, such an imbalance did not intensify, and a dynamic balance was instead observed. The detailed findings of variations in cortical interactions during sleep stage transition promote understanding of sleep mechanism, sleep process, and sleep function. Additionally, it is expected to provide helpful clues for sleep improvement, like reducing the time required to fall asleep and maintaining sleep depth.
Collapse
Affiliation(s)
- Yingjie Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiakai Lian
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kejie Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Wen
- Psychology Department, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|