1
|
Parlatini V, Bellato A, Roy S, Murphy D, Cortese S. Association Between Single-Dose and Longer Term Clinical Response to Stimulants in Attention-Deficit/Hyperactivity Disorder: A Systematic Review of Randomized Controlled Trials. J Child Adolesc Psychopharmacol 2024; 34:337-345. [PMID: 39027968 DOI: 10.1089/cap.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Objectives: Stimulants, such as methylphenidate (MPH) and amphetamines, represent the first-line pharmacological option for attention-deficit/hyperactivity disorder (ADHD). Randomized controlled trials (RCTs) have demonstrated beneficial effects at a group level but could not identify characteristics consistently associated with varying individual response. Thus, more individualized approaches are needed. Experimental studies have suggested that the neurobiological response to a single dose is indicative of longer term response. It is unclear whether this also applies to clinical measures. Methods: We carried out a systematic review of RCTs testing the association between the clinical response to a single dose of stimulants and longer term improvement. Potentially suitable single-dose RCTs were identified from the MED-ADHD data set, the European ADHD Guidelines Group RCT Data set (https://med-adhd.org/), as updated on February 1, 2024. Quality assessment was carried out using the Cochrane Risk of Bias (RoB) 2.0 tool. Results: A total of 63 single-dose RCTs (94% testing MPH, 85% in children) were identified. Among these, only a secondary analysis of an RCT tested the association between acute and longer term clinical response. This showed that the clinical improvement after a single dose of MPH was significantly associated with symptom improvement after a 4-week MPH treatment in 46 children (89% males) with ADHD. The risk of bias was rated as moderate. A further RCT used near-infrared spectroscopy, thus did not meet the inclusion criteria, and reported an association between brain changes under a single-dose and longer term clinical response in 22 children (82% males) with ADHD. The remaining RCTs only reported single-dose effects on neuropsychological, neuroimaging, or neurophysiological measures. Conclusion: This systematic review highlighted an important gap in the current knowledge. Investigating how acute and long-term response may be related can foster our understanding of stimulant mechanism of action and help develop stratification approaches for more tailored treatment strategies. Future studies need to investigate potential age- and sex-related differences.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Solent NHS Trust, Southampton, United Kingdom
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Psychology, University of Nottingham, Semenyih, Malaysia
- Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia
| | - Sulagna Roy
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Solent NHS Trust, Southampton, United Kingdom
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, United Kingdom
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, New York, USA
| |
Collapse
|
2
|
Leng X, Yu X, Chen Y, Wang T, Zhao F, Feng C, Feng W. Temporal dynamics of spatial attentional biases toward weight-related words among females with weight dissatisfaction. Biol Psychol 2024; 190:108807. [PMID: 38703810 DOI: 10.1016/j.biopsycho.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Attentional bias toward weight-related stimuli plays a crucial role in the development and maintenance of body image disturbances. However, the temporal dynamics of attentional biases responsible for the previously reported behavioral effects caused by the task-irrelevant but spatial-relevant weight-related stimuli presented in the peripheral visual field among females with high weight dissatisfaction (HWD) remain unclear. The present study combined the modified dot-probe task and event-related potentials to explore the temporal dynamics of spatial attentional biases toward weight-related words among females with HWD. The results showed significantly larger N2pc amplitudes were elicited by fat-related and thin-related words than neutral words only in the HWD group. Moreover, only fat-related words elicited a significant PD for the HWD group, and the PD amplitudes were larger in the HWD group than in the control group. These findings revealed that weight-related words initially captured spatial allocation among females with HWD, and then fat-related words were actively suppressed after the initial capturing.
Collapse
Affiliation(s)
- Xuechen Leng
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 21512, China
| | - Xiaocui Yu
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 21512, China
| | - Yixuan Chen
- College of Teacher Education, Lishui University, Lishui, Zhejiang 323000, China
| | - Ting Wang
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 21512, China
| | - Fan Zhao
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 21512, China.
| | - Chengzhi Feng
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 21512, China.
| | - Wenfeng Feng
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 21512, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Kong Y, Zhao C, Li D, Li B, Hu Y, Liu H, Woolgar A, Guo J, Song Y. Auditory change detection and visual selective attention: association between MMN and N2pc. Cereb Cortex 2024; 34:bhae175. [PMID: 38700440 DOI: 10.1093/cercor/bhae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
While the auditory and visual systems each provide distinct information to our brain, they also work together to process and prioritize input to address ever-changing conditions. Previous studies highlighted the trade-off between auditory change detection and visual selective attention; however, the relationship between them is still unclear. Here, we recorded electroencephalography signals from 106 healthy adults in three experiments. Our findings revealed a positive correlation at the population level between the amplitudes of event-related potential indices associated with auditory change detection (mismatch negativity) and visual selective attention (posterior contralateral N2) when elicited in separate tasks. This correlation persisted even when participants performed a visual task while disregarding simultaneous auditory stimuli. Interestingly, as visual attention demand increased, participants whose posterior contralateral N2 amplitude increased the most exhibited the largest reduction in mismatch negativity, suggesting a within-subject trade-off between the two processes. Taken together, our results suggest an intimate relationship and potential shared mechanism between auditory change detection and visual selective attention. We liken this to a total capacity limit that varies between individuals, which could drive correlated individual differences in auditory change detection and visual selective attention, and also within-subject competition between the two, with task-based modulation of visual attention causing within-participant decrease in auditory change detection sensitivity.
Collapse
Affiliation(s)
- Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Zhuhai 519087, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Hongyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Alexandra Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Jialiang Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
4
|
Ihara K, Shikano Y, Kato S, Yagishita S, Tanaka KF, Takata N. A reinforcement learning model with choice traces for a progressive ratio schedule. Front Behav Neurosci 2024; 17:1302842. [PMID: 38268795 PMCID: PMC10806202 DOI: 10.3389/fnbeh.2023.1302842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The progressive ratio (PR) lever-press task serves as a benchmark for assessing goal-oriented motivation. However, a well-recognized limitation of the PR task is that only a single data point, known as the breakpoint, is obtained from an entire session as a barometer of motivation. Because the breakpoint is defined as the final ratio of responses achieved in a PR session, variations in choice behavior during the PR task cannot be captured. We addressed this limitation by constructing four reinforcement learning models: a simple Q-learning model, an asymmetric model with two learning rates, a perseverance model with choice traces, and a perseverance model without learning. These models incorporated three behavioral choices: reinforced and non-reinforced lever presses and void magazine nosepokes, because we noticed that male mice performed frequent magazine nosepokes during PR tasks. The best model was the perseverance model, which predicted a gradual reduction in amplitudes of reward prediction errors (RPEs) upon void magazine nosepokes. We confirmed the prediction experimentally with fiber photometry of extracellular dopamine (DA) dynamics in the ventral striatum of male mice using a fluorescent protein (genetically encoded GPCR activation-based DA sensor: GRABDA2m). We verified application of the model by acute intraperitoneal injection of low-dose methamphetamine (METH) before a PR task, which increased the frequency of magazine nosepokes during the PR session without changing the breakpoint. The perseverance model captured behavioral modulation as a result of increased initial action values, which are customarily set to zero and disregarded in reinforcement learning analysis. Our findings suggest that the perseverance model reveals the effects of psychoactive drugs on choice behaviors during PR tasks.
Collapse
Affiliation(s)
- Keiko Ihara
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yu Shikano
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Sae Kato
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Sho Yagishita
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|