Gutiérrez-Ortega A, Moreno DA, Ferrari SA, Espinosa-Andrews H, Ortíz EP, Milián-Suazo F, Alvarez AH. High-yield production of major T-cell ESAT6-CFP10 fusion antigen of M. tuberculosis complex employing codon-optimized synthetic gene.
Int J Biol Macromol 2021;
171:82-88. [PMID:
33418045 DOI:
10.1016/j.ijbiomac.2020.12.179]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Translation engineering and bioinformatics have accelerated the rate at which gene sequences can be improved to generate multi-epitope proteins. Strong antigenic proteins for tuberculosis diagnosis include individual ESAT6 and CFP10 proteins or derived peptides. Obtention of heterologous multi-component antigens in E. coli without forming inclusion bodies remain a biotechnological challenge. The gene sequence for ESAT6-CFP10 fusion antigen was optimized by codon bias adjust for high-level expression as a soluble protein. The obtained fusion protein of 23.7 kDa was observed by SDS-PAGE and Western blot analysis after Ni-affinity chromatography and the yield of expressed soluble protein reached a concentration of approximately 67 mg/L in shake flask culture after IPTG induction. Antigenicity was evaluated at 4 μg/mL in whole blood cultures from bovines, and protein stimuli were assessed using a specific in vitro IFN-γ release assay. The hybrid protein was able to stimulate T-cell specific responses of bovine TB suspects. The results indicate that improved E. coli codon usage is a good and cost-effective strategy to potentialize large scale production of multi-epitope proteins with sustained antigenic properties for diagnostic purposes.
Collapse