1
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
2
|
Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes (Basel) 2023. [DOI: 10.3390/pr11030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Composting is the most adaptable and fruitful method for managing biodegradable solid wastes; it is a crucial agricultural practice that contributes to recycling farm and agricultural wastes. Composting is profitable for various plant, animal, and synthetic wastes, from residential bins to large corporations. Composting and agricultural waste management (AWM) practices flourish in developing countries, especially Pakistan. Composting has advantages over other AWM practices, such as landfilling agricultural waste, which increases the potential for pollution of groundwater by leachate, while composting reduces water contamination. Furthermore, waste is burned, open-dumped on land surfaces, and disposed of into bodies of water, leading to environmental and global warming concerns. Among AWM practices, composting is an environment-friendly and cost-effective practice for agricultural waste disposal. This review investigates improved AWM via various conventional and emerging composting processes and stages: composting, underlying mechanisms, and factors that influence composting of discrete crop residue, municipal solid waste (MSW), and biomedical waste (BMW). Additionally, this review describes and compares conventional and emerging composting. In the conclusion, current trends and future composting possibilities are summarized and reviewed. Recent developments in composting for AWM are highlighted in this critical review; various recommendations are developed to aid its technological growth, recognize its advantages, and increase research interest in composting processes.
Collapse
|
3
|
Bioprocessing of biowaste derived from food supply chain side-streams for extraction of value added bioproducts through biorefinery approach. Food Chem Toxicol 2022; 165:113184. [DOI: 10.1016/j.fct.2022.113184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
4
|
Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon 2022; 8:e09173. [PMID: 35368548 PMCID: PMC8971590 DOI: 10.1016/j.heliyon.2022.e09173] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reviews the pertinent literature from 1970 to 2020 and presents a bibliometric analysis of research trends in the application of solid-state fermentation in the bioprocessing of agro-industrial wastes. A total 5630 publications of studies on solid-state fermentation that comprised of 5208 articles (92.50%), 340 book chapters (6.04%), 39 preprints (0.69%), 32 proceedings (0.56%), 8 edited books (0.14%) and 3 monographs (0.05%) were retrieved from Dimensions database. A review of the literature indicated that (i) fermentation of solid substrates is variously defined in the literature over the past 50 years, where "solid-state fermentation" is the most dominant research term used, and (ii) key products derived from the valorization of agro-industrial wastes through solid-state fermentation include, among others, enzymes, antioxidants, animal feed, biofuel, organic acids, biosurfactants, etc. Bibliometric analyses with VOSviewer revealed an astronomic increase in publications between 2000 and 2020, and further elucidated the most frequently explored core research topics, the most highly cited publications and authors, and countries/regions with the highest number of citations. The most cited publication between 2010 and 2020 had 382 citations compared to 725 citations for the most cited publication from 1970 to 2020. Ashok Pandey from India was the most published and cited author with 123 publications and 8,613 citations respectively; whereas Bioresource Technology was the most published and cited journal with 233 publications and 12,394 citations. Countries with the most publications and citations are Brazil, France, India, and Mexico. These findings suggest that research in the application of solid-state fermentation for bioprocessing of agro-industrial wastes has gained prominence over the past 50 years. Future perspectives and implications are discussed.
Collapse
|
5
|
Zong X, Wen L, Wang Y, Li L. Research progress of glucoamylase with industrial potential. J Food Biochem 2022; 46:e14099. [PMID: 35132641 DOI: 10.1111/jfbc.14099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Abstract
Glucoamylase is one of the most widely used enzymes in industry, but the development background and existing circumstances of industrial glucoamylase were not described by published articles. CiteSpace, a powerful tool for bibliometric, was used to analyze the past, existing circumstances, and trends of a professional field. In this study, 1820 Web-of-Science-indexed articles from 1991 to 2021 were collected and analyzed by CiteSpace. The research hotspots of industrial glucoamylase, like glucoamylase strain directional improvement, Aspergillus niger glucoamylase, glucoamylase immobilization, application of glucoamylase in ethanol production, and "customized production" of porous starch, were found by analyzing countries, institutions, authors, keywords, and references of articles. PRACTICAL APPLICATIONS: The research progress of glucoamylase with industrial potential was analyzed by CiteSpace, and a significant research direction of glucoamylase with industrial potential was found. This is helpful for academic and corporate audiences to understand the current situation of glucoamylase with industrial potential and carry out follow-up works.
Collapse
Affiliation(s)
- Xuyan Zong
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Lei Wen
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Yanting Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Li
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China
| |
Collapse
|
6
|
Martău GA, Unger P, Schneider R, Venus J, Vodnar DC, López-Gómez JP. Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste. J Fungi (Basel) 2021; 7:jof7090766. [PMID: 34575805 PMCID: PMC8472611 DOI: 10.3390/jof7090766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/20/2023] Open
Abstract
Solid state fermentation (SsF) is recognized as a suitable process for the production of enzymes using organic residues as substrates. However, only a few studies have integrated an evaluation of the feasibility of applying enzymes produced by SsF into subsequent hydrolyses followed by the production of target compounds, e.g., lactic acid (LA), through submerged-liquid fermentations (SmF). In this study, wheat bran (WB) was used as the substrate for the production of enzymes via SsF by Aspergillus awamori DSM No. 63272. Following optimization, cellulase and glucoamylase activities were 73.63 ± 5.47 FPU/gds and 107.10 ± 2.63 U/gdb after 7 days and 5 days of fermentation, respectively. Enzymes were then used for the hydrolysis of the organic fraction of municipal solid waste (OFMSW). During hydrolysis, glucose increased considerably with a final value of 19.77 ± 1.56 g/L. Subsequently, hydrolysates were fermented in SmF by Bacillus coagulans A166 increasing the LA concentration by 15.59 g/L. The data reported in this study provides an example of how SsF and SmF technologies can be combined for the valorization of WB and OFMSW.
Collapse
Affiliation(s)
- Gheorghe-Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Peter Unger
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (P.U.); (R.S.); (J.V.)
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (P.U.); (R.S.); (J.V.)
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (P.U.); (R.S.); (J.V.)
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (D.C.V.); (J.P.L.-G.); Tel.: +40-747-341881 (D.C.V.); +49-177-3940305 (J.P.L.-G.)
| | - José Pablo López-Gómez
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (P.U.); (R.S.); (J.V.)
- Correspondence: (D.C.V.); (J.P.L.-G.); Tel.: +40-747-341881 (D.C.V.); +49-177-3940305 (J.P.L.-G.)
| |
Collapse
|
7
|
Kalia S, Bhattacharya A, Prajapati SK, Malik A. Utilization of starch effluent from a textile industry as a fungal growth supplement for enhanced α-amylase production for industrial application. CHEMOSPHERE 2021; 279:130554. [PMID: 33873067 DOI: 10.1016/j.chemosphere.2021.130554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Desizing process in textile industry produces large volume of starch effluent. This carbon-rich waste can be used for resource recovery, such as the production of industrially useful enzymes. The present work assesses the usability of starch effluent from textile industry as an additional carbon source for enhanced production of α-amylase during solid-state fermentation (SSF) of agro-wastes by Trichoderma reesei. A significant increase (p ≤ 0.05) in α-amylase activity (25.48 ± 1.12 U mL-1) was observed with supplementation of starch effluent in SSF. Partial purification of α-amylase by 80% ammonium sulphate precipitation produced a yield of 58.39% enzyme with purification fold of 1.89. The enzyme was thermally stable at 40 °C with 90% residual activity after 5 h and 70% residual activity at 50 °C after 3 h. Using Michaelis-Menten kinetics analysis, the estimated Km and Vmax values for the partially purified α-amylase were found to be 2.55 mg mL-1 and 53.47 U mg-1, respectively. For the rapid assessment of the industrial application, desizing of the fabric was attempted. The cotton fabric was efficiently desized using α-amylase (at a concentration of 1% on the weight of fabric basis) at 80 °C. The present work demonstrates starch effluent from desizing process as a resource for the production of amylase. The amylase can further be used in the desizing process. With in-depth research, the work may lead to the development of a closed-loop, waste-recycling process for the textile industry.
Collapse
Affiliation(s)
- Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Arghya Bhattacharya
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India; Department of Biotechnology, Gandhi Institute of Engineering and Technology University, Gunupur, Odisha, 765022, India.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
8
|
Pham NTK, Le NL. Effects of α-amylase and wheatgrass supplement on fermentation process, textural, antioxidant and sensory properties of steamed white honeycomb cakes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Al-Harbi SA, Almulaiky YQ. Purification and biochemical characterization of Arabian balsam α-amylase and enhancing the retention and reusability via encapsulation onto calcium alginate/Fe2O3 nanocomposite beads. Int J Biol Macromol 2020; 160:944-952. [DOI: 10.1016/j.ijbiomac.2020.05.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/27/2023]
|
10
|
Bhatt K, Lal S, R S, Joshi B. Bioconversion of agriculture wastes to produce α-amylase from Bacillus velezensis KB 2216: Purification and characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Bhatt B, Prajapati V, Patel K, Trivedi U. Kitchen waste for economical amylase production using Bacillus amyloliquefaciens KCP2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101654] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Shruthi BR, Achur RNH, Nayaka Boramuthi T. Optimized Solid-State Fermentation Medium Enhances the Multienzymes Production from Penicillium citrinum and Aspergillus clavatus. Curr Microbiol 2020; 77:2192-2206. [PMID: 32451686 DOI: 10.1007/s00284-020-02036-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/15/2020] [Indexed: 01/14/2023]
Abstract
Filamentous fungi play an important role in the production of a range of useful extracellular hydrolytic enzymes for wide industrial applications. The Western Ghats region is known for its rich microbial biodiversity and could be a potential source of several useful fungi that could be exploited for the production of industrially important enzymes. From this soil, we aimed at the isolation of multienzyme producing fungi, optimization of the culture conditions using solid-state fermentation (SSF), partial purification of enzymes and characterization by zymography. Out of seven fungal strains, two isolates, namely Penicillium citrinum and Aspergillus clavatus, were found to produce amylase and cellulase enzymes maximally. The effect of different physicochemical parameters on the production of amylase and cellulase was investigated and the maximum production of multienzymes was achieved in wheat bran substrate. The newly formulated and optimized medium increased the multienzyme production in P. citrinum and A. clavatus as compared to medium with individually optimized parameters. Further, for the first time, different isoforms of amylase and cellulase have been identified from P. citrinum and A. clavatus by zymography. In summary, the present study showed that the filamentous fungi can utilize the industrial waste product such as wheat bran as the substrate for multienzymes production by SSF and could be a promising source of enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Balakrishna Rao Shruthi
- Department of Microbiology, Jnana Sahyadri, Kuvempu University, Shivamogga District, Shankaraghatta, Karnataka, 577451, India
| | - Rajeshwara Nagappa Hegde Achur
- Department of Biochemistry, Jnana Sahyadri, Kuvempu University, Shivamogga District, Shankaraghatta, Karnataka, 577451, India
| | - Thippeswamy Nayaka Boramuthi
- Department of Microbiology, Jnana Sahyadri, Kuvempu University, Shivamogga District, Shankaraghatta, Karnataka, 577451, India.
| |
Collapse
|
13
|
Extremophilic Amylases: Microbial Production and Applications. MICROORGANISMS FOR SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-1710-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Improvement of the Quality of Ginkgo biloba Leaves Fermented by Eurotium cristatum as High Value-Added Feed. Processes (Basel) 2019. [DOI: 10.3390/pr7090627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ginkgo biloba leaves are well known for their high content of nutrients and bioactive substances. However, unpleasant smell and a small number of ginkgolic acids greatly reduce the utilization of the leaves. In this work, solid-state fermentation of G. biloba leaves using Eurotium cristatum was studied by investigation of the nutrient changes and its feasibility as a functional feed. E. cristatum could grow on pure G. biloba leaves and the addition of excipients could significantly improve the growth of E. cristatum. The optimal medium was with 10% (w/w) of whole G. biloba seeds and the optimized water content, pH, inoculum size and fermentation time were 45% (w/w), 4.5, 4.76 × 107 CFU/100 g wet medium, and eight days, respectively. Under the optimal conditions, the spore number increased by about 40 times. The content of flavonoids was greatly increased by 118.6%, and the protein and polyprenyl acetates (PPAs) were increased by 64.9% and 10.6%, respectively. The ginkgolic acids, lignin, and cellulose were decreased by 52.4%, 38.5%, and 20.1% than before, respectively. Furthermore, the fermented G. biloba leaves showed higher antioxidant activity and held more aroma substances. Thus, G. biloba leaves fermented by E. cristatum have potential as s high value-added feed. This is the first investigation of E. cristatum fermentation on ginkgo leaves, which will facilitate the use of ginkgo leaves in the feed industry.
Collapse
|
15
|
Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100224] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Meng S, Yin Y, Yu L. Exploration of a high-efficiency and low-cost technique for maximizing the glucoamylase production from food waste. RSC Adv 2019; 9:22980-22986. [PMID: 35514468 PMCID: PMC9067104 DOI: 10.1039/c9ra04530a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022] Open
Abstract
This study was aimed at the exploration of high-efficiency and low-cost technique for glucoamylase (GA) production from food waste; moreover, the produced GA could be directly used in the hydrolysis of food waste. A mixture of food waste, rice waste and cake waste as a sole feedstock was investigated for the production of GA via solid-state fermentation. The highest GA activity of 458.3 U g-1 was obtained from the rice waste after 9 days of incubation. The cake waste also demonstrated a high GA production, achieving 406.5 U g-1 dry substrate. However, the most practical substrate for GA production that could be integrated in the food waste treatment was the mixed food waste, which could effectively produce GA without any additives or adjustments using the technique developed in this study. The optimum conditions for GA production from the mixed food waste were determined through a response surface methodology: the temperature of 31.16 °C, the inoculum amount of 1.54 mL, and the time of fermentation of 7.81 days. The maximum GA activity of 180.59 U g-1 could be achieved under these optimum conditions, which was actually much higher than those reported in the literature. This study showed that the mixed food waste could be an ideal feedstock for the on-site production of high-activity GA, and the produced GA could be directly applied in food waste hydrolysis, which significantly reduced the process cost.
Collapse
Affiliation(s)
- Shujuan Meng
- School of Space and Environment, Beihang University Beijing 100191 PR China
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University 1 Cleantech Loop Singapore 637141
| | - Yao Yin
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University 1 Cleantech Loop Singapore 637141
| | - Liu Yu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University 1 Cleantech Loop Singapore 637141
- School of Civil and Environmental Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798 +65-67905254
| |
Collapse
|
17
|
Waghmare PR, Patil SM, Jadhav SL, Jeon BH, Govindwar SP. Utilization of agricultural waste biomass by cellulolytic isolate Enterobacter sp. SUK-Bio. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Saleem A, Ebrahim MK. Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2013.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A. Saleem
- Biology Department, Faculty of Science, Taibah University, 30002 Almadinah Almunawwarah, Saudi Arabia
| | - Mohsen K.H. Ebrahim
- Biology Department, Faculty of Science, Taibah University, 30002 Almadinah Almunawwarah, Saudi Arabia
| |
Collapse
|
19
|
Waghmare PR, Watharkar AD, Jeon BH, Govindwar SP. Bio-ethanol production from waste biomass of Pogonatherum crinitum phytoremediator: an eco-friendly strategy for renewable energy. 3 Biotech 2018; 8:158. [PMID: 29515964 PMCID: PMC5834409 DOI: 10.1007/s13205-018-1188-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/26/2018] [Indexed: 11/28/2022] Open
Abstract
In this study, we have described three steps to produce ethanol from Pogonatherum crinitum, which was derived after the treatment of textile wastewater. (a) Production of biomass: biomass samples collected from a hydroponic P. crinitum phytoreactor treating dye textile effluents and augmented with Ca-alginate immobilized growth-promoting bacterium, Bacillus pumilus strain PgJ (consortium phytoreactor), and waste sorghum husks were collected and dried. Compositional analysis of biomass (consortium phytoreactor) showed that the concentration of cellulose, hemicelluloses and lignin was 42, 30 and 17%, respectively, whereas the biomass samples without the growth-promoting bacterium (normal phytoreactor) was slightly lower, 40, 29 and 16%, respectively. (b) Hydrolysate (sugar) production: a crude sample of the fungus, Phanerochaete chrysosporium containing hydrolytic enzymes such as endoglucanase (53.25 U/ml), exoglucanase (8.38 U/ml), glucoamylase (115.04 U/ml), xylanase (83.88 U/ml), LiP (0.972 U/ml) and MnP (0.459 U/ml) was obtained, and added to consortium, normal and control phytoreactor derived biomass supplemented with Tween-20 (0.2% v/v). The hydrolysate of biomass from consortium phytoreactor produced maximum reducing sugar (0.93 g/l) than hydrolysates of normal phytoreactor biomass (0.82 g/l) and control phytoreactor biomass (0.79 g/l). FTIR and XRD analysis confirmed structural changes in treated biomass. (c) Ethanol production: the bioethanol produced from enzymatic hydrolysates of waste biomass of consortium and normal phytoreactor using Saccharomyces cerevisiae (KCTC 7296) was 42.2 and 39.4 g/l, respectively, while control phytoreactor biomass hydrolysate showed only 25.5 g/l. Thus, the amalgamation of phytoremediation and bioethanol production can be the truly environment-friendly way to eliminate the problem of textile dye along with bioenergy generation.
Collapse
Affiliation(s)
| | | | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Sanjay P. Govindwar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 India
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
20
|
Rezaul Kar KM, Husaini A, Tasnim T. Production and Characterization of Crude Glucoamylase from Newly Isolated Aspergillus flavus NSH9 in Liquid Culture. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajbmb.2017.118.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Zhang Y, Wang L, Chen H. Correlations of medium physical properties and process performance in solid-state fermentation. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Nunes LV, de Barros Correa FF, de Oliva Neto P, Mayer CRM, Escaramboni B, Campioni TS, de Barros NR, Herculano RD, Fernández Núñez EG. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture. World J Microbiol Biotechnol 2017; 33:79. [PMID: 28341908 DOI: 10.1007/s11274-017-2240-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L-1) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L-1) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L-1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.
Collapse
Affiliation(s)
- Luiza Varela Nunes
- Grupo de Engenharia de Bioprocessos, Departamento de Ciências Biológicas, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Fabiane Fernanda de Barros Correa
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Pedro de Oliva Neto
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Cassia Roberta Malacrida Mayer
- Laboratório de Química de Alimentos e Nanobiotecnologia, Departamento de Biotecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus-Assis, Avenida Dom Antonio 2100, Bairro Parque Universitário, Assis, SP, 19806-900, Brazil
| | - Bruna Escaramboni
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Tania Sila Campioni
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Natan Roberto de Barros
- Instituo de Química - Araraquara, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Araraquara, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Rondinelli Donizetti Herculano
- Instituo de Química - Araraquara, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Araraquara, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Eutimio Gustavo Fernández Núñez
- Grupo de Engenharia de Bioprocessos, Departamento de Ciências Biológicas, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil.
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
23
|
Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9020224] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Arun C, Sivashanmugam P. Study on optimization of process parameters for enhancing the multi-hydrolytic enzyme activity in garbage enzyme produced from preconsumer organic waste. BIORESOURCE TECHNOLOGY 2017; 226:200-210. [PMID: 28002780 DOI: 10.1016/j.biortech.2016.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The garbage enzymes produced from preconsumer organic waste containing multi hydrolytic enzyme activity which helps to solubilize the waste activated sludge. The continuous production of garbage enzyme and its scaling up process need a globe optimized condition. In present study the effect of fruit peel composition and sonication time on enzyme activity were investigated. Garbage enzyme produced from 6g pineapple peels: 4g citrus peels pre-treated with ultrasound for 20min shows higher hydrolytic enzymes activity. Simultaneously statistical optimization tools were used to model garbage enzyme production with higher activity of amylase, lipase and protease. The maximum activity of amylase, lipase and protease were predicted to be 56.409, 44.039, 74.990U/ml respectively at optimal conditions (pH (6), temperature (37°C), agitation (218 RPM) and fermentation duration (3days)). These optimized conditions can be successfully used for large scale production of garbage enzyme with higher hydrolytic enzyme activity.
Collapse
Affiliation(s)
- C Arun
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - P Sivashanmugam
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
25
|
Simultaneous Production of Amyloglucosidase and Exo-Polygalacturonase by Aspergillus niger in a Rotating Drum Reactor. Appl Biochem Biotechnol 2016; 181:627-637. [DOI: 10.1007/s12010-016-2237-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022]
|
26
|
Syed F, Ali K, Asad MJ, Fraz MG, Khan Z, Imran M, Taj R, Ahmad A. Preparation and characterization of a green nano-support for the covalent immobilization of glucoamylase from Neurospora sitophila. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:309-317. [DOI: 10.1016/j.jphotobiol.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
|
27
|
Enhanced production of amylase from Bacillus sp. using groundnut shell and cassava waste as a substrate under process optimization: Waste to wealth approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Izmirlioglu G, Demirci A. Strain selection and medium optimization for glucoamylase production from industrial potato waste by Aspergillus niger. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2788-2795. [PMID: 26333342 DOI: 10.1002/jsfa.7445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Glucoamylase is one of the most common enzymes used in the food industry to break down starch into its monomers. Glucoamylase production and its activity are highly dependent on medium composition. Starch is well known as a glucoamylase inducer, and utilization of industrial starchy potato waste is an inexpensive way of improving glucoamylase production. Since glucoamylase production is highly dependent on medium composition, in this study medium optimization for glucoamylase production was considered to enhance glucoamylase activity. RESULTS Among the evaluated microbial species, Aspergillus niger van Tieghem was found to be the best glucoamylase-producing fungus. The Plackett-Burman design was used to screen various medium ingredients, and malt extract, FeSO4 .7H2 O and CaCl2 ·2H2 O were found to have significant effects on glucoamylase production. Finally, malt extract, FeSO4 .7H2 O and CaCl2 .2H2 O were optimized by using a central composite design of response surface methodology. The results showed that the optimal medium composition for A. niger van Tieghem was 50 g L(-1) industrial waste potato mash supplemented with 51.82 g L(-1) malt extract, 9.27 g L(-1) CaCl2 ·2H2 O and 0.50 g L(-1) FeSO4 .7H2 O. CONCLUSION At the end of optimization, glucoamylase activity and glucose production were improved 126% and 98% compared to only industrial waste potato mash basal medium; 274.4 U mL(-1) glucoamylase activity and 41.7 g L(-1) glucose levels were achieved, respectively. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gulten Izmirlioglu
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
29
|
Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 2015; 13:1925-65. [PMID: 25854643 PMCID: PMC4413194 DOI: 10.3390/md13041925] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022] Open
Abstract
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.
Collapse
|
30
|
MIKAI S, I N, KONOMI J, SATO Y, ERA M, NINOMIYA J, MORITA H. Simultaneous Increase of Glucoamylase and α-Amylase Production in Submerged Co-culture of Aspergillus and Rhizopus Strains. ACTA ACUST UNITED AC 2015. [DOI: 10.11301/jsfe.16.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Saki MIKAI
- Graduate school of Environmental Engineering, Kitakyushu University
| | - Nanako I
- Graduate school of Environmental Engineering, Kitakyushu University
| | - Jun KONOMI
- Graduate school of Environmental Engineering, Kitakyushu University
| | - Yukae SATO
- Graduate school of Environmental Engineering, Kitakyushu University
| | - Mariko ERA
- Graduate school of Environmental Engineering, Kitakyushu University
| | - Junko NINOMIYA
- Graduate school of Environmental Engineering, Kitakyushu University
| | - Hiroshi MORITA
- Faculty of Environmental Engineering, Kitakyushu University
| |
Collapse
|
31
|
|
32
|
Solid-state fermentation of Ginkgo biloba L. residue for optimal production of cellulase, protease and the simultaneous detoxification of Ginkgo biloba L. residue using Candida tropicalis and Aspergillus oryzae. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2337-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Production of fungal glucoamylase for glucose production from food waste. Biomolecules 2013; 3:651-61. [PMID: 24970186 PMCID: PMC4030950 DOI: 10.3390/biom3030651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10-3minutes-1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes.
Collapse
|
34
|
ElMekawy A, Diels L, De Wever H, Pant D. Valorization of cereal based biorefinery byproducts: reality and expectations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9014-27. [PMID: 23931701 PMCID: PMC3774676 DOI: 10.1021/es402395g] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The growth of the biobased economy will lead to an increase in new biorefinery activities. All biorefineries face the regular challenges of efficiently and economically treating their effluent to be compatible with local discharge requirements and to minimize net water consumption. The amount of wastes resulting from biorefineries industry is exponentially growing. The valorization of such wastes has drawn considerable attention with respect to resources with an observable economic and environmental concern. This has been a promising field which shows great prospective toward byproduct usage and increasing value obtained from the biorefinery. However, full-scale realization of biorefinery wastes valorization is not straightforward because several microbiological, technological and economic challenges need to be resolved. In this review we considered valorization options for cereals based biorefineries wastes while identifying their challenges and exploring the opportunities for future process.
Collapse
Affiliation(s)
- Ahmed ElMekawy
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
- Genetic Engineering and Biotechnology
Research Institute, Minufiya University, Sadat City, Egypt
| | - Ludo Diels
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
| | - Heleen De Wever
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
| | - Deepak Pant
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
- Phone: +32 14336969; fax: +32 14326586; e-mail: ;
| |
Collapse
|
35
|
Prajapati VS, Trivedi UB, Patel KC. Optimization of glucoamylase production by Colletotrichum sp. KCP1 using statistical methodology. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0005-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Bansal N, Tewari R, Soni R, Soni SK. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:1341-6. [PMID: 22503148 DOI: 10.1016/j.wasman.2012.03.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 02/27/2012] [Accepted: 03/08/2012] [Indexed: 05/15/2023]
Abstract
Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio.
Collapse
Affiliation(s)
- Namita Bansal
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
37
|
Moubasher H, Fahmi AA, Abdur-Rahman M. Induction, purification and molecular characterization of sulfhydryl oxidase from an Egyptian isolates of Aspergillus niger. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s000368381203009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Yang S, Lio J, Wang T. Evaluation of enzyme activity and fiber content of soybean cotyledon fiber and distiller's dried grains with solubles by solid state fermentation. Appl Biochem Biotechnol 2012; 167:109-21. [PMID: 22528656 DOI: 10.1007/s12010-012-9665-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 03/30/2012] [Indexed: 11/30/2022]
Abstract
To increase the value of coproducts from corn ethanol fermentation and soybean aqueous processing, distiller's dried grains with solubles (DDGS) and soybean cotyledon fiber were used as the substrates for solid state fermentation (SSF) to improve feed digestibility. Aspergillus oryzae, Trichoderma reesei, and Phanerochaete chrysosporium were chosen as they produce desirable enzymes and are widely used in SSF for feed. The results showed that the cellulase and xylanase activities were significantly increased after 7 days of fermentation, and cellulose and hemicellulose degradation was also greatly increased. When soybean fiber was used as SSF substrate, the maximum activities of the cellulase and xylanase were 10.3 and 84.2 IU/g substrate (dry weight basis) after SSF treatment, respectively. However, the enzyme activities were relatively low in DDGS, and the growth of the three fungi was poor. The fungi grew better when soybean cotyledon fiber was added to DDGS, and cellulase and xylanase activity increased with the increase of soybean fiber content. Porosity was identified as an important factor for SSF because the addition of inert soybean hull alone improved the fungi growth significantly. These data suggest that the nutritional value of DDGS and soybean cotyledon fiber as monogastric animal feed could be greatly enhanced by SSF treatment.
Collapse
Affiliation(s)
- Shengli Yang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
39
|
Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii. ACTA ACUST UNITED AC 2012; 39:759-66. [DOI: 10.1007/s10295-011-1070-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Abstract
The present study deals with submerged ethanol, citric acid, and α-amylase fermentation by Saccharomyces cerevisiae SDB, Aspergillus niger ANSS-B5, and Candida guilliermondii CGL-A10, using date wastes as the basal fermentation medium. The physical and chemical parameters influencing the production of these metabolites were optimized. As for the ethanol production, the optimum yield obtained was 136.00 ± 0.66 g/l under optimum conditions of an incubation period of 72 h, inoculum content of 4% (w/v), sugars concentration of 180.0 g/l, and ammonium phosphate concentration of 1.0 g/l. Concerning citric acid production, the cumulative effect of temperature (30°C), sugars concentration of 150.0 g/l, methanol concentration of 3.0%, initial pH of 3.5, ammonium nitrate concentration of 2.5 g/l, and potassium phosphate concentration of 2.5 g/l during the fermentation process of date wastes syrup did increase the citric acid production to 98.42 ± 1.41 g/l. For the production of α-amylase, the obtained result shows that the presence of starch strongly induces the production of α-amylase with a maximum at 5.0 g/l. Among the various nitrogen sources tested, urea at 5.0 g/l gave the maximum biomass and α-amylase estimated at 5.76 ± 0.56 g/l and 2,304.19 ± 31.08 μmol/l/min, respectively after 72 h incubation at 30°C, with an initial pH of 6.0 and potassium phosphate concentration of 6.0 g/l.
Collapse
|
40
|
SATO T, FUKUDA T, MORITA H. Glucoamylse Production in Submerged Co-Culture System of Bacillus amyloliquefaciens and Rhizopus cohnii. ACTA ACUST UNITED AC 2011. [DOI: 10.11301/jsfe.12.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takahiro SATO
- Graduate School of Environmental Engineering, The University of Kitakyushu
| | | | - Hiroshi MORITA
- Graduate School of Environmental Engineering, The University of Kitakyushu
| |
Collapse
|
41
|
Wang XQ, Wang QH, Liu YY, Ma HZ. On-site production of crude glucoamylase for kitchen waste hydrolysis. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2010; 28:539-544. [PMID: 20015936 DOI: 10.1177/0734242x09354353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Kitchen waste from dining rooms accounts for a considerable proportion of municipal solid garbage, and economical recycle ways are needed to be developed. This study investigated glucoamylase production from kitchen waste and the feasibility of kitchen waste hydrolysis by the crude enzymes produced. The key problems of high water content and poor porosity in kitchen waste for glucoamylase production under solid-state fermentation could be solved readily by the addition of corn stover or paddy husk. As a support medium, corn stover was better than paddy husk. Smashed kitchen waste (sKW) mixed with corn stover in the ratio of 3.75 : 1 (dry basis) produced 1838 U g(-1) of glucoamylase by Aspergillus niger UV-60 within 96 h. The enzyme productivity from kitchen waste was over two-fold higher than that from wheat bran with additional nutrients. Without any recovery treatment, the produced glucoamylase could be used directly to hydrolyse sKW slurry. The optimum enzyme dose 8% (crude enzyme/kichen waste, w/w) was not too big, and was sufficient to hydrolyse 10% (dry basis) sKW slurry to produce a maximum amount of reducing sugar of 55.4 g L(-1).
Collapse
Affiliation(s)
- Xiao Qiang Wang
- National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy, North China Electric Power University, Beijing, China
| | | | | | | |
Collapse
|
42
|
Pavezzi FC, Carneiro AAJ, Bocchini-Martins DA, Alves-Prado HF, Ferreira H, Martins PM, Gomes E, da Silva R. Influence of Different Substrates on the Production of a Mutant Thermostable Glucoamylase in Submerged Fermentation. Appl Biochem Biotechnol 2010; 163:14-24. [DOI: 10.1007/s12010-010-8963-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 04/05/2010] [Indexed: 11/24/2022]
|
43
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Du C, Lin SKC, Koutinas A, Wang R, Dorado P, Webb C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. BIORESOURCE TECHNOLOGY 2008; 99:8310-5. [PMID: 18434138 DOI: 10.1016/j.biortech.2008.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/28/2008] [Accepted: 03/01/2008] [Indexed: 05/03/2023]
Abstract
In this study, a novel generic feedstock production strategy based on solid-state fermentation (SSF) has been developed and applied to the fermentative production of succinic acid. Wheat was fractionated into bran, gluten and gluten-free flour by milling and gluten extraction processes. The bran, which would normally be a waste product of the wheat milling industry, was used to produce glucoamylase and protease enzymes via SSF using Aspergillus awamori and Aspergillus oryzae, respectively. The resulting solutions were separately utilised for the hydrolysis of gluten-free flour and gluten to generate a glucose-rich stream of over 140gl(-1) glucose and a nitrogen-rich stream of more than 3.5gl(-1) free amino nitrogen. A microbial feedstock consisting of these two streams contained all the essential nutrients required for succinic acid fermentations using Actinobacillus succinogenes. In a fermentation using only the combined hydrolysate streams, around 22gl(-1) succinic acid was produced. The addition of MgCO3 into the wheat-derived medium improved the succinic acid production further to more than 64gl(-1). These results demonstrate the SSF-based strategy is a successful approach for the production of a generic feedstock from wheat, and that this feedstock can be efficiently utilised for succinic acid production.
Collapse
Affiliation(s)
- Chenyu Du
- Satake Centre for Grain Process Engineering, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Arvanitoyannis IS, Tserkezou P. Corn and rice waste: a comparative and critical presentation of methods and current and potential uses of treated waste. Int J Food Sci Technol 2008. [DOI: 10.1111/j.1365-2621.2007.01545.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Wang Q, Wang X, Wang X, Ma H. Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
|