1
|
Zhao A, Li Y, Wu L, Wang Z, Lv Y, Xiong W, Alam MA, Liu G, Xu J. Immobilization of rough morphotype Mycolicibacterium neoaurum R for androstadienedione production. Biotechnol Lett 2024; 46:55-68. [PMID: 38064040 DOI: 10.1007/s10529-023-03448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/20/2023] [Accepted: 11/04/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVES Enhance the androstadienedione (Androst-1,4-diene-3,17-dione, ADD) production of rough morphotype Mycolicibacterium neoaurum R by repeated-batch fermentation of immobilized cells. RESULTS M. neoaurum R was a rough colony morphotype variant, obtained from the routine plating of smooth M. neoaurum strain CICC 21097. M. neoaurum R showed rougher cell surface and aggregated in broth. The ADD production of M. neoaurum R was notably lower than that of M. neoaurum CICC 21097 during the free cell fermentation, but the yield gap could be erased after proper cell immobilization. Subsequently, repeated-batch fermentation of immobilized M. neoaurum R was performed to shorten the production cycle and enhance the bio-production efficiency of ADD. Through the optimization of the immobilization carriers and the co-solvents for phytosterols, the ADD productivity of M. neoaurum R immobilized by semi-expanded perlite reached 0.075 g/L/h during the repeated-batch fermentation for 40 days. CONCLUSIONS The ADD production of the rough-type M. neoaurum R was notably enhanced by the immobilization onto semi-expanded perlite. Moreover, the ADD batch yields of M. neoaurum R immobilized by semi-expanded perlite were maintained at high levels during the repeated-batch fermentation.
Collapse
Affiliation(s)
- Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yamei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lixia Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mohammad Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100081, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Liu YQ, Wang ZW, Hu CY. Progress in research on the safety of silicone rubber products in food processing. Compr Rev Food Sci Food Saf 2023; 22:2887-2909. [PMID: 37183940 DOI: 10.1111/1541-4337.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/24/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023]
Abstract
Silicone rubber (SR) is widely used in the food processing industry due to its excellent physical and chemical properties. However, due to the differences in SR product production formulas and processes, the quality of commercially available SR products varies greatly, with chemical and biological hazard potentials. Residual chemicals in SR, such as siloxane oligomers and 2,4-dichlorobenzoic acid, are non-intentionally added substances, which may migrate into food during processing so the safe use of SR must be guaranteed. Simultaneously, SR in contact with food is susceptible to pathogenic bacteria growing and biofilm formation, like Cronobacter sakazakii, Staphylococcus aureus, Salmonella enteritidis, and Listeria monocytogenes, posing a food safety risk. Under severe usage scenarios such as high-temperature, high-pressure, microwave, and freezing environments with long-term use, SR products are more prone to aging, and their degradation products may pose potential food safety hazards. Based on the goal of ensuring food quality and safety to the greatest extent possible, this review suggests that enterprises need to prepare high-quality food-contact SR products by optimizing the manufacturing formula and production process, and developing products with antibacterial and antiaging properties. The government departments should establish quality standards for food-contact SR products and conduct effective supervision. Besides, the reusable SR products should be cleaned by consumers immediately after use, and the deteriorated products should be replaced as soon as possible.
Collapse
Affiliation(s)
- Yi-Qi Liu
- Department of Food Science & Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Wei Wang
- Packaging Engineering Institute, Jinan University, Zhuhai, Guangdong, China
| | - Chang-Ying Hu
- Department of Food Science & Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Nunes VO, Vanzellotti NDC, Fraga JL, Pessoa FLP, Ferreira TF, Amaral PFF. Biotransformation of Phytosterols into Androstenedione—A Technological Prospecting Study. Molecules 2022; 27:molecules27103164. [PMID: 35630641 PMCID: PMC9147728 DOI: 10.3390/molecules27103164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Androstenedione (AD) is a key intermediate in the body’s steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry’s search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on “process improvement” techniques and on possible modifications of the “microorganism” involved in biosynthesis (64 and 62 documents, respectively). The most-reported “process improvement” technique is “chemical addition” (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the “microorganism” category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.
Collapse
Affiliation(s)
- Victor Oliveira Nunes
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Nathália de Castro Vanzellotti
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Jully Lacerda Fraga
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Fernando Luiz Pellegrini Pessoa
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Centro Universitário SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | - Tatiana Felix Ferreira
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Priscilla Filomena Fonseca Amaral
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
4
|
Zhang Y, Zhou X, Yao Y, Xu Q, Shi H, Wang K, Feng W, Shen Y. Coexpression of VHb and MceG genes in Mycobacterium sp. Strain LZ2 enhances androstenone production via immobilized repeated batch fermentation. BIORESOURCE TECHNOLOGY 2021; 342:125965. [PMID: 34563820 DOI: 10.1016/j.biortech.2021.125965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Androstenone production is limited by low-efficiency substrate transport and dissolved oxygen levels during fermentation. In this study, the coexpression of the optimized Vitreoscilla hemoglobin (VHb) and sterol transporter ATPase (MceG) genes in Mycobacterium sp. LZ2 (Msp) was investigated to alleviate dissolved oxygen and mass transfer limitations. Results revealed that Msp-vgb/mceG effectively improved the growth, production, and adaptation to dissolved oxygen compared with those of Msp. The increased catalase activity and reduced intracellular ROS levels enhanced cell viability and promoted transcription of genes critical for phytosterol metabolism. Bagasse as an immobilization carrier increased the productivity of Msp-vgb/mceG by 56%. Immobilized repeat batch fermentation reduced the biotransformation period from 60 days to 37 days and improved the productivity from 0.039 g/L/h to 0.069 g/L/h. To the best of our knowledge, this work is the first study on the immobilization of recombinant mycobacteria on bagasse for androstenone production.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yingying Yao
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Qianqian Xu
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Haiying Shi
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Kuiming Wang
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Wei Feng
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
5
|
Abstract
The review is devoted to biocatalysts based on actinobacteria of the genus Rhodococcus, which are promising for environmental biotechnologies. In the review, biotechnological advantages of Rhodococcus bacteria are evaluated, approaches used to develop robust and efficient biocatalysts are discussed, and their relevant applications are given. We focus on Rhodococcus cell immobilization in detail (methods of immobilization, criteria for strains and carriers, and optimization of process parameters) as the most efficient approach for stabilizing biocatalysts. It is shown that advanced Rhodococcus biocatalysts with improved working characteristics, enhanced stress tolerance, high catalytic activities, human and environment friendly, and commercially viable are developed, which are suitable for wastewater treatment, bioremediation, and biofuel production.
Collapse
|
6
|
Neumann AC, Bauer D, Hoelscher M, Haisch C, Wieser A. Identifying Dormant Growth State of Mycobacteria by Orthogonal Analytical Approaches on a Single Cell and Ensemble Basis. Anal Chem 2018; 91:881-887. [DOI: 10.1021/acs.analchem.8b03646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A.-C. Neumann
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
| | - D. Bauer
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - M. Hoelscher
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
| | - C. Haisch
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - A. Wieser
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
| |
Collapse
|
7
|
Sripalakit P, Saraphanchotiwitthaya A. Utilization of phytosterol-containing vegetable oils as a substrate for production of androst-4-ene-3,17-dione and androsta-1,4-diene-3,17-dione by using Mycobacterium sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Shao M, Zhang X, Rao Z, Xu M, Yang T, Li H, Xu Z. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy. PLoS One 2015; 10:e0137658. [PMID: 26352898 PMCID: PMC4564235 DOI: 10.1371/journal.pone.0137658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.
Collapse
Affiliation(s)
- Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
- * E-mail:
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
9
|
Anes J, Fernandes P. Towards the continuous production of fructose syrups from inulin using inulinase entrapped in PVA-based particles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol 2014; 30:1947-54. [PMID: 24510385 DOI: 10.1007/s11274-014-1614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Mycobacterium neoaurum NwIB-01 exhibits powerful ability to cleave the side chain of soybean phytosterols to accumulate 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). The difficulty in separation of AD from ADD is one of the key bottlenecks to the microbial transformation of phytosterols in the industry. To enhance ADD quantity in products, 3-ketosteroid Δ(1)-dehydrogenase genes (kstD M and kstD(A)) were obtained from M. neoaurum NwIB-01 and Arthrobacter simplex respectively. Using replicating vector pMV261, kstD(M) and kstD(A) were overexpressed in M. neoaurum NwIB-01. For foreign gene stable expression, the integration vector pMV306 was used for kstD M/kstD(A) overexpression and the relevant sequences of promoter and kanamycin antibiotic resistance gene sequences were amplified by PCR to verify plasmid integrity. The resultant plasmid and mutant strain were verified and the kstD augmentation mutants were good ADD-producing strains. The ADD producing capacity of NwIB-04 and NwIB-05 was 0.1401 and 0.1740 g/l (cultured in shake bottles with 0.4 g/l phytosterols), and the molar ratio of ADD in products was 98.34 and 98.60%, respectively. This study on the manipulation of the main kstDM gene in Mycobacterium sp. provides a feasible way to achieve excellent phytosterol-transformation strains with high product purity.
Collapse
|
11
|
Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 2012; 94:1423-47. [PMID: 22562163 DOI: 10.1007/s00253-012-4078-0] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 12/14/2022]
Abstract
Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.
Collapse
Affiliation(s)
- Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow Region 142290, Russia.
| | | |
Collapse
|
12
|
Olivares A, Acevedo F. Effect of inoculation strategies, substrate to biomass ratio and nitrogen sources on the bioconversion of wood sterols by Mycobacterium sp. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0720-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Saab HB, Fouchard S, Boulanger A, Llopiz P, Neunlist S. Performance ofLuffa cylindricaas an immobilization matrix for the biotransformation of cholesterol byMycobacteriumspecies. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242422.2010.537326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Robledo-Ortíz JR, Ramírez-Arreola DE, Gomez C, González-Reynoso O, González-Núñez R. Bacterial immobilization by adhesion onto agave-fiber/polymer foamed composites. BIORESOURCE TECHNOLOGY 2010; 101:1293-1299. [PMID: 19819131 DOI: 10.1016/j.biortech.2009.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
Adhesion of Pseudomonas putida F1 onto agave-fiber/recycled-polyethylene foamed composites was studied under different controlled conditions. The adhesion process was analyzed in batch experiments controlling factors such as pH, contact time, temperature, initial biomass concentration and ionic strength; and was verified by scanning electron microscopy (SEM). The number of adhered bacteria after the experimental time was determined by difference between concentration of suspended cells in NaCl solution contained in two different Erlenmeyer flasks, one of the flasks with composite pellets and the other one without them. The concentration of cells in each flask was obtained using the serial dilution technique. Experimental data analysis showed that adsorption follows first-order kinetics. And it was further corroborated to be an irreversible process. For the first time, an equation is proposed here to predict the correlation between adhered bacteria and aqueous pH. In addition to the obvious reuse of waste material, these results suggested that agave-fiber/polymer foamed composites could be used as support for bacterial immobilization to be applied, among others in environmental processes such as bioremediation and biofiltration of gases with almost limitless possibilities.
Collapse
Affiliation(s)
- J R Robledo-Ortíz
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco, C.P. 44430, Mexico
| | | | | | | | | |
Collapse
|