1
|
Bouzar B, Benzerzour M, Abriak NE. Innovative reuse of mineral waste for treatment of a contaminated soil by fluorine: synthesis of hydroxyapatite (HAP) and chemical performance assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34452-x. [PMID: 39066942 DOI: 10.1007/s11356-024-34452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This research aimed to introduce a novel method for the valorization of mineral waste, focusing on the development of hydroxyapatite (HAP) as an effective and economical adsorbent for immobilizing fluoride ions (F-) in soil. Hydroxyapatites were produced through the reaction between potassium dihydrogen phosphate (KH2PO4) and calcium-abundant limestone soil (CLS). X-ray diffraction analyses revealed that the primary phases in HAPCLS were brushite (CaHPO5·2H2O) and hydroxyapatite (Ca10(PO4)6(OH)2). The FTIR spectra exhibited characteristics akin to natural HAP, including the presence of orthophosphate groups (PO43-), hydroxyl groups (OH-), and both A/B types of carbonates in the apatite structure. The morphology of the synthesized HAP, as observed through SEM-EDS, was consistent with that of phosphocalcic hydroxyapatite crystals. The EDS results indicated a Ca/P atomic ratio of 1.7 for HAPCLS, aligning closely with the typical hydroxyapatite stoichiometry (Ca/P = 1.67). The application of HAP to reduce fluoride (F-) levels in soil proved to be successful; introducing 1% of various HAP formulations reduced the fluoride concentration from 51.4 mg/kg in untreated soil to levels below the IWSI limit (10 mg/kg), achieving a reduction to 8.1 mg/kg for HAPCLS. The sequential extraction of fluoride demonstrated that after soil treatment, fluoride was predominantly removed from the residual fraction (Fraction 4) and was effectively sequestered by the hydroxyapatites (Ca10(PO4)6(OH)2) through anionic exchange with hydroxide ions (OH-), resulting in the formation of stable and insoluble fluorapatite (Ca10(PO4)6F2).
Collapse
Affiliation(s)
- Bader Bouzar
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France.
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France.
| | - Mahfoud Benzerzour
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France
| | - Nor-Edine Abriak
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France
| |
Collapse
|
2
|
Wang K, Yang H, Chang Y, Huang W, Jiang X. Phosphorus release and distribution in sediment resuspension systems under disturbing conditions. CHEMOSPHERE 2024; 359:142386. [PMID: 38777196 DOI: 10.1016/j.chemosphere.2024.142386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The resuspension of phosphorus (P) in sediments has the most significant contribution to the overlying water. The PP release characterization during resuspension was investigated. The results indicated that the P in suspensions had more release risk compared to the sediments. The particulate P (PP) concentration (0.54 mg L-1) under high-intensity rotational speed (250 rad min-1) was about five times higher than others (0.11 mg L-1). The sorption parameters of zero equilibrium P concentration (EPC0F) and soluble reactive P (SRP) were significantly correlated with each other (p < 0.01, r = 0.73). Suspended solids expressed stronger P source than sediments. The values of EPC0F was highly significantly correlated with the sorption coefficient (KF) and native adsorbed P (NAP) (p < 0.01). The mean values of NAP were 0.0612 mg g-1 and 0.0604 mg g-1 in the Prophase and Metaphase, respectively, and 0.0586 mg g-1 at Anaphase. The values of P sorption index (PSI) ranged from 0.4359 to 0.6862 L g-1, with mean values of 0.5350 L g-1 (Prophase), 0.6061 L g-1 (Metaphase), and 0.4967 L g-1 (Anaphase). The degree of P saturation (DPS) decreased in the order of Anaphase (2.73%) > Prophase (2.53%) > Metaphase (2.12%). The release risk index of P (ERI) decreased in the order of Anaphase (5.47%) > Prophase (4.72%) > Metaphase (3.59%), with a range of 2.12%-8.56%. To fast and slow scale, the results of NaOH-P (V1<0, V2>0) contribution indicated that the persistent disturbance promoted the release of adsorbed dissolved PP from NaOH-P in suspended sediment to the overlying water. The contribution of HCl-P (V2 > 0) was positive in the Anaphase of the slow scale, and HCl-P was a PP source in the frequently disturbing conditions.
Collapse
Affiliation(s)
- Kun Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haoran Yang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yongsheng Chang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Huang W, Dong X, Tu C, Yang H, Chang Y, Yang X, Chen H, Che F. Response mechanism of sediment endogenous phosphorus release to functional microorganisms and its cyanobacterial growth and disappearance effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167676. [PMID: 37816408 DOI: 10.1016/j.scitotenv.2023.167676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Endogenous phosphorus (P) release from lake sediments is an important factor in the eutrophication of overlying waters, as P is the limiting nutrient salt affecting cyanobacterial growth. Microorganisms are also key to the evolution of cyanobacterial growth and disappearance, as they can influence the release of endogenous P. Meanwhile, endogenous phosphorus can also have an impact on microbial structure. However, there is a lack of studies on the response mechanisms between endogenous P release and microorganisms, as well as the exploration of endogenous P release on the whole cyanobacterial growth and disappearance evolution process. In this study, metagenome sequencing was used to characterize the microbial community structure at different times and to explain the P cycle from the perspective of functional genes. The results showed that the number of sediment microorganisms (genes) gradually increased with the P release capacity, and the outbreak with the strongest P release capacity possessed the most abundant microorganisms (genes). Proteobacteria with P solubilizing functions were consistently the most abundant phylum in all four periods and were positively correlated with P release potential assessment factors EPC0, EPC0F, and NAP. Functional genes affect the P cycle by acting primarily on inorganic P solubilization, organic P mineralization, and P transport. These P-functional genes are mainly found in Proteobacteria, Acidobacteria, Chloroflexi, and Actinobacteria microorganisms. In addition, the P form in the sediments was dominated by IP, with the highest concentration (704.86 mg/kg) occurring during the dormant period. Sediments from this period acted as a strong P "sink", creating a precondition for cyanobacterial recovery and outbreaks to provide a source of P. The results of this study can provide a theoretical basis for controlling endogenous P release at the microscopic level of cyanobacterial growth and disappearance.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoshuang Dong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengqi Tu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongsheng Chang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xixi Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Zhao L, Chen J, Jiang X, Xing J, Wang S. Distribution characteristics and potential release risk of nitrogen in sediments in Lake Daihai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64363-64376. [PMID: 37069374 DOI: 10.1007/s11356-023-26801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) in sediments was a key element of lake eutrophication. The spatial distribution characteristics of four parts N in surface sediments were investigated by sequential extraction method, including free nitrogen (FN), exchangeable nitrogen (EN), hydrolyzable nitrogen (HN), and residual nitrogen (RN). Modified models were utilized to describe the adsorption isotherms of ammonia nitrogen (NH4+-N) in sediments and thus predict the risk of N release. The correlation between environmental factors and N concentration was discussed, as well as the migration or transformation and release risk of N between different mediums. The results showed that spatial variations characteristics of N fractions were influenced by the lake topography and surrounding human activities. The content of total nitrogen (TN) in the sediments was 933.4 ~ 3006.8 mg/kg, with an average of 1835 mg/kg. The HN, RN, FN, and EN in sediments accounted for 66.85%, 21.35%, 6.82%, and 4.92% of TN, respectively. There was a significant correlation between each fraction of N and TN and also between different fractions of N (p < 0.01). Fitting by modified Langmuir model indicated that the adsorbed amounts of N in the sediments at maximum (Qmax) was, from greatest to least, southeast lake (2905.3 mg/kg) > southwest lake (1415.4 mg/kg) ≈ north lake (1424.6 mg/kg). Environmental parameters (pH, DO, C/N, etc.) affected the occurrence fraction of nitrogen, which could cause the persistent and increased risk of sustained release of high concentrations of endogenous N. N pollution in sediment and interstitial water is severe, and the risk of endogenous N release will gradually increase in the future.
Collapse
Affiliation(s)
- Li Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jianyu Xing
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
6
|
El Kaim Billah R, Ayouch I, Abdellaoui Y, Kassab Z, Khan MA, Agunaou M, Soufiane A, Otero M, Jeon BH. A Novel Chitosan/Nano-Hydroxyapatite Composite for the Adsorptive Removal of Cd(II) from Aqueous Solution. Polymers (Basel) 2023; 15:polym15061524. [PMID: 36987304 PMCID: PMC10058910 DOI: 10.3390/polym15061524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
A novel polymer bio-composite based on nano-hydroxyapatite (n-Hap) and chitosan (CS) (CS/n-Hap) was synthesized to effectively address toxic cadmium ions removal from water. The composition and structure of CS/n-Hap bio-composite were analyzed through different characterization techniques. XRD patterns affirmed that the crystalline structure of n-Hap remained unaltered during CS/n-Hap synthesis, while FT-IR spectrum sustained all the characteristic peaks of both CS and n-Hap, affirming the successful synthesis of CS/n-Hap. Adsorption studies, including pH, adsorbent dosage, contact time, initial Cd(II) concentration, and temperature, were carried out to explain and understand the adsorption mechanism. Comparatively, CS/n-Hap bio-composite exhibited better Cd(II) adsorption capacity than pristine CS, with an experimental maximum uptake of 126.65 mg/g under optimized conditions. In addition, the kinetic data were well fitted to the pseudo-second-order model, indicating the formation of chemical bonds between Cd(II) and CS/n-Hap during adsorption. Furthermore, the thermodynamic study suggested that Cd(II) adsorption onto CS/n-Hap was endothermic and spontaneous. The regeneration study showed only about a 3% loss in Cd(II) uptake by CS/n-Hap after five consecutive cycles. Thus, a simple and facile approach was here developed to synthesize an eco-friendly and cost-effective material that can be successfully employed for the removal of toxic heavy metal ions from water.
Collapse
Affiliation(s)
- Rachid El Kaim Billah
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ikrame Ayouch
- Laboratory of Materials and Interfacial Systems, Faculty of Sciences Tétouan, University Abdelmalek Essaadi (UAE), P.O. Box 2121, Tétouan 93000, Morocco
- MASCIR Foundation, Rabat Design, Rue Mohamed EL Jazouli, Madinat EL Ifrane, Rabat 10100, Morocco
| | - Youness Abdellaoui
- Faculty of Engineering, Autonomous University of Yucatan, Mérida 97000, Mexico
- Department of Sustainability of Natural Resources and Energy, Center for Research and Advanced Studies of the National Polytechnic Institute, Saltillo 25900, Mexico
| | - Zineb Kassab
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (M.A.K.); (M.O.)
| | - Mahfoud Agunaou
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Abdessadik Soufiane
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Marta Otero
- Departmento de Química y Física Aplicadas, Universidad de Leon, Campus de Vegazana s/n, 24071 Leon, Spain
- Correspondence: (M.A.K.); (M.O.)
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
7
|
Regeneration Analysis of Bone Char Used in Water Defluoridation: Chemical Desorption Route, Surface Chemistry Analysis and Modeling. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1155/2023/8378162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
High concentrations of fluoride (F−) in drinking water represent a public health threat, and consequently, effective and sustainable methods are required to improve the water quality, mainly in developing and low-income countries. This study focused on the thermodynamics of fluoride adsorption on bone char regenerated with NaOH for water defluoridation. A detailed analysis of the number of fluoride adsorption/desorption cycles, their impact on the performance and surface chemistry of bone char using different NaOH concentrations, and modeling of the adsorption mechanism using statistical physics theory was carried out. The results showed that 0.075 mol/L NaOH was effective in recuperating the defluoridation properties of bone char with a regeneration efficiency higher than 90% during five adsorption/desorption cycles. Bone char regeneration efficiency decreased up to 64% after ten adsorption/desorption cycles with a maximum fluoride adsorption capacity of 0.18 mmol/g. NaOH restored the bone char surface properties for ligand exchange of the fluoride anions via the hydroxyapatite functionalities contained in this adsorbent. It was calculated that around 0.25–0.46 mmol/g hydroxyapatite ligand exchange sites of regenerated bone char samples could be involved in the fluoride adsorption, which was also expected to be a mono-ligand mechanism. The reduction in defluoridation properties of bone char during the regeneration cycles was attributed to the decrease in the ligand exchange capacity as well as the deactivation and blocking of some functional groups of hydroxyapatite, which limited their participation in consecutive adsorption processes. This study contributes to the optimization of the recycling and reuse of bone char for fluoride removal from water to reduce the operating defluoridation costs, thus enhancing the application of this technology in low-income areas where fluorinated water represents a threat to public health.
Collapse
|
8
|
Wang S, Yang H, Che F, Huang W, Yang D. Removal efficacy of fly ash composite filler on tailwater nitrogen and phosphorus and its application in constructed wetlands. Front Chem 2023; 11:1160489. [PMID: 37153523 PMCID: PMC10155834 DOI: 10.3389/fchem.2023.1160489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Constructed wetlands (CWs) have been widely used in tailwater treatment. However, it is difficult to achieve considerable removal efficiency of nitrogen and phosphorus in tailwater solely by CWs-an efficient green wetland filler is also important. This study investigated 160 domestic sewage treatment facilities (DSTFs) in rural areas from two urban areas in Jiaxing for TP and NH3-N and found that TP and NH3-N concentrations in rural domestic sewage (RDS) in this plain river network are still high. Therefore, we selected a new synthetic filler (FA-SFe) to enhance nitrogen and phosphorus reduction, and we discuss the importance of filler in constructed wetlands. Experiments revealed the adsorption capacity of the new filler: the maximum adsorption amounts of TP and NH3-N reached 0.47 g m-2 d-1 and 0.91 g m-2 d-1, respectively. The application potential of FA-SFe was verified in actual wastewater treatment, with the removal rates of ammonia nitrogen and TP reaching 71.3% and 62.7%, respectively. This study provides a promising pathway for nitrogen and phosphorus removal from rural tailwaters.
Collapse
Affiliation(s)
- Shuhang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Haoran Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
- *Correspondence: Dianhai Yang, ; Wei Huang,
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Dianhai Yang, ; Wei Huang,
| |
Collapse
|
9
|
Tu C, Jin Z, Che F, Cao X, Song X, Lu C, Huang W. Characterization of phosphorus sorption and microbial community in lake sediments during overwinter and recruitment periods of cyanobacteria. CHEMOSPHERE 2022; 307:135777. [PMID: 35870615 DOI: 10.1016/j.chemosphere.2022.135777] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/08/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The release of endogenous phosphorus from lacustrine sediment is a key element of freshwater eutrophication. The microbes in sediments may affect phosphorus migration and transformation during the growth of cyanobacteria, which may lead to the release of phosphorus from sediments and contribute to water eutrophication. To study phosphorus sorption and the microbial community structure in the overlying water and the vertical depth of sediments, samples in Meiliang Bay were collected during the dormancy and resuscitation phases of cyanobacteria. The results showed that there were high total phosphorus (TP) concentrations in the overlying water and sediment, with maximum values reached 0.24 mg L-1 and 1059 mg kg-1, respectively. Fitting by modified Langmuir model indicated that the partitioning coefficients (KP) was, from greatest to least: bottom sediment (maximum of 0.923 L g-1) > middle sediment (0.571 L g-1) > surface sediment (0.262 L g-1). During the cyanobacteria resuscitation stage, the relative abundance of Proteobacteria (18.37%-33.56%), Chloroflexi (9.57%-17.76%), Cyanobacteria (0.38%-2.62%), and the Nitrospirota phylum Thermodesulfovibrionia (4.61%-10.14%) were higher than the dormant period of cyanobacteria, and bacteria with phosphorus-solubilizing (27.27%-52.01%) accounted for the majority. The redundancy analysis (RDA) found that the structure of the microbial communities in sediments was significant correlation with organic phosphorus (OP) (P = 0.002) during recruitment period of cyanobacteria, which would accelerate the conversion of OP into soluble inorganic phosphorus and then gets released from sediment to water. The most predominant phylum among phosphorus-solubilizing bacteria (PSB) is Proteobacteria, followed by Actinobacteriota, which were positively correlated with equilibrium phosphorus concentration (EPC0) (P < 0.05) during the cyanobacterial resuscitation phase. The sediments from the cyanobacteria resuscitation phase had phosphorus release risk and highlighted the significant role of the bacterial community.
Collapse
Affiliation(s)
- Chengqi Tu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Zhenghai Jin
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xin Cao
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Changyu Lu
- Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang, 050031, Hebei, PR China
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
Yapo NS, Aw S, Briton BGH, Drogui P, Yao KB, Adouby K. Removal of fluoride in groundwater by adsorption using hydroxyapatite modified Corbula trigona shell powder. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Rathnayake A, Hettithanthri O, Sandanayake S, Mahatantila K, Rajapaksha AU, Vithanage M. Essence of hydroxyapatite in defluoridation of drinking water: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119882. [PMID: 35934148 DOI: 10.1016/j.envpol.2022.119882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAP) is an easily synthesizable, low-cost mineral that has been recognized as a potential material for fluoride removal. Some of the synthesis methods of HAP are quite straightforward and cost-effective, while some require sophisticated synthesis techniques under advanced laboratory conditions. This review assesses the physicochemical characteristics of HAP and HAP-based composites produced via various techniques, their recent development in defluoridation and most importantly, the fluoride removal performances. For the first time, fluoride removal performances of HAP and HAP composites are compared based on partition coefficient (KD) instead of maximum adsorption capacity (Qmax), which is significantly influenced by initial loading concentrations. Novel HAP tailored composites exhibit comparatively high KD values indicating the excellent capability of fluoride removal along with specific surface areas above 120 m2/g. HAP doped with aluminium complexes, HAP doped ceramic beads, HAP-pectin nanocomposite and HAP-stilbite nanocomposite, HAP decorated nanotubes, nanowires and nanosheets demonstrated high Qmax and KD. The secret of HAP is not the excellent fluoride removal performances but best removal at neutral and near-neutral pH, which most of the defluoridation materials are incapable of, making them ideal adsorbents for drinking water treatment. Multiple mechanisms including physical surface adsorption, ion-exchange, and electrostatic interactions are the main mechanisms involved in defluoridation. Further research work must be focused on upscaling HAP-based composites for defluoridation on a commercial scale.
Collapse
Affiliation(s)
- Anushka Rathnayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Institute of Chemistry Ceylon, Adamantane House, Rajagiriya, Sri Lanka
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Sandun Sandanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Kushani Mahatantila
- Chemical and Microbiological Laboratory, Industrial Technology Institute, Colombo 7, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; The Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Uttarakhand, 248007, India.
| |
Collapse
|
12
|
Sekar S, Panchu SE, Kolanthai E, Subbaraya NK. Enhanced fluoride adsorption and regeneration efficiency of cross-linker-free mesoporous hydroxyapatite/chitosan nanocomposites. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Dzieniszewska A, Nowicki J, Rzepa G, Kyziol-Komosinska J, Semeniuk I, Kiełkiewicz D, Czupioł J. Adsorptive removal of fluoride using ionic liquid-functionalized chitosan - Equilibrium and mechanism studies. Int J Biol Macromol 2022; 210:483-493. [PMID: 35500782 DOI: 10.1016/j.ijbiomac.2022.04.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 01/04/2023]
Abstract
In this study, novel biosorbents, based on chitosan and imidazolium ionic liquid, were prepared for the removal of fluoride from aqueous solutions. The adsorbents were characterized by FTIR, SEM-EDS and low-temperature nitrogen adsorption-desorption. To investigate the adsorption mechanism and behavior of chitosan adsorbents, batch experiments were conducted under different adsorbent dosages (2, 4, 10 g/L), pH (4, 7, 9) and initial concentration (0.5-25.0 mg/L). The influence of the method of synthesis of ionic liquid on the adsorption performance were also studied. Experimental data were evaluated by Freundlich, Langmuir and Sips models. The introduction of ionic liquid significantly improved the uptake of fluoride compared to pure chitosan. The adsorption was influenced by the experimental conditions, as well as the method of ionic liquid synthesis. The highest fluoride removal was observed at pH 4 and found to decrease with increasing pH. The removal efficiency and adsorption capacity values indicated that the dose of 4 g/L was the optimum adsorbent dosage. The equilibrium data fitted best with the Sips isotherm and the maximum adsorption capacity reached 8.068 mg/g for modified chitosan beads. The mechanism of fluoride adsorption onto ionic liquid-modified chitosan involves electrostatic attraction, ion exchange and ion pair interaction.
Collapse
Affiliation(s)
- A Dzieniszewska
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| | - J Nowicki
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - G Rzepa
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - J Kyziol-Komosinska
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| | - I Semeniuk
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - D Kiełkiewicz
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - J Czupioł
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| |
Collapse
|
14
|
Olejarczyk M, Rykowska I, Urbaniak W. Management of Solid Waste Containing Fluoride-A Review. MATERIALS 2022; 15:ma15103461. [PMID: 35629486 PMCID: PMC9147173 DOI: 10.3390/ma15103461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
Technological and economic development have influenced the amount of post-production waste. Post-industrial waste, generated in the most considerable amount, includes, among others, waste related to the mining, metallurgical, and energy industries. Various non-hazardous or hazardous wastes can be used to produce new construction materials after the “solidification/stabilization” processes. They can be used as admixtures or raw materials. However, the production of construction materials from various non-hazardous or hazardous waste materials is still very limited. In our opinion, special attention should be paid to waste containing fluoride, and the reuse of solid waste containing fluoride is a high priority today. Fluoride is one of the few trace elements that has received much attention due to its harmful effects on the environment and human and animal health. In addition to natural sources, industry, which discharges wastewater containing F− ions into surface waters, also increases fluoride concentration in waters and pollutes the environment. Therefore, developing effective and robust technologies to remove fluoride excess from the aquatic environment is becoming extremely important. This review aims to cover a wide variety of procedures that have been used to remove fluoride from drinking water and industrial wastewater. In addition, the ability to absorb fluoride, among others, by industrial by-products, agricultural waste, and biomass materials were reviewed.
Collapse
Affiliation(s)
- Małgorzata Olejarczyk
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.O.); (I.R.)
- Construction Company “Waciński” Witold Waciński, ul. Długa 15, 83-307 Kiełpino, Poland
| | - Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.O.); (I.R.)
| | - Włodzimierz Urbaniak
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.O.); (I.R.)
- Correspondence:
| |
Collapse
|
15
|
Fluoride Adsorption Comparison from Aqueous Solutions Using Al- and La-Modified Adsorbent Prepared from Polygonum orientale Linn. WATER 2022. [DOI: 10.3390/w14040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Al- and La-modified adsorbent materials (PO–Al, PO–La) were prepared by impregnating Polygonum orientale Linn. straw with Al2(SO4)3 and La(NO3)3·6H2O solutions. The potential of removing fluoride using these modified adsorbents was examined. In the PO, PO–Al and PO–La adsorption systems, the fluoride adsorption process followed pseudo-second-order kinetics, and the kinetic constants for k2 and R2 were 0.0276 and 0.9609; 0.2070 and 0.9994; 0.1266 and 0.9933, respectively. The adsorption equilibrium results showed the best match with Langmuir isotherms. Moreover, the maximum monolayer adsorption capacity of PO, PO–Al and PO–La are 0.0923, 3.3190 and 1.2514 mg/g, respectively, in 30 °C. The regeneration results show that the effectively regenerating ability of modified adsorbents. Al-modified adsorbent showed the best results in terms of cost-effectiveness and adsorption efficiency for fluoride adsorption.
Collapse
|
16
|
Milošević D, Lević S, Lazarević S, Veličković Z, Marinković A, Petrović R, Petrović P. Hybrid material based on subgleba of mosaic puffball mushroom (Handkea utriformis) as an adsorbent for heavy metal removal from aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113358. [PMID: 34311248 DOI: 10.1016/j.jenvman.2021.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The alkali treated subglebal tissue of the mosaic puffball (Handkea utriformis) (Sa) and Sa modified with hydroxyapatite (Sa-HAp), obtained by successive ionic layer adsorption and reaction (SILAR) method, were used for the removal of Pb2+, Cd2+ and Ni2+ from aqueous solution. The materials were characterized by FT-IR, Raman, SEM and EDS analysis and by determination of pHPZC. The adsorption performances of Sa and Sa-HAp were assessed in batch experiments at different pH, contact times, temperatures and mass of the adsorbent. Different models of adsorption isotherms were used, and the best fit was obtained with the Langmuir model. Maximum adsorption capacities of Sa towards Pb2+, Cd2+ and Ni2+ were 44.82, 15.54 and 17.21 mg g-1, while for Sa-HAp were 79.55, 52.59 and 45.01 mg g-1, respectively. Kinetic data were well fitted by a pseudo second-order model, while thermodynamic studies disclose spontaneous and endothermic adsorption process. The Sa-Hap was successfully regenerated with 1 M NaCl and after the fifth desorption cycle and 10 h achieved 82.9, 69.7 and 60.4 %, while for 0.5 M NaCl + 0.5 M NaOH and 1 h was 78.3, 64.1, 57.5 % of desorbed Pb2+, Cd2+ and Ni2+, respectively. The competitive study and results from a column system confirmed good applicability of Sa-HAp adsorbent.
Collapse
Affiliation(s)
- Dragana Milošević
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Department of Ecology and Technoeconomics, Njegoševa 12, 11001, Belgrade, Serbia.
| | - Steva Lević
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080, Zemun, Serbia
| | - Slavica Lazarević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11060, Belgrade, Serbia
| | - Zlate Veličković
- University of Defense, Military Academy, Veljka Lukića Kurjaka 33, 11000, Belgrade, Serbia
| | - Aleksandar Marinković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11060, Belgrade, Serbia
| | - Rada Petrović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11060, Belgrade, Serbia
| | - Predrag Petrović
- Innovation Center, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120, Belgrade, Serbia
| |
Collapse
|
17
|
Wan K, Huang L, Yan J, Ma B, Huang X, Luo Z, Zhang H, Xiao T. Removal of fluoride from industrial wastewater by using different adsorbents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145535. [PMID: 33588221 DOI: 10.1016/j.scitotenv.2021.145535] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Many industries such as iron and steel metallurgy, copper and zinc smelting, the battery industry, and cement manufacturing industries discharge high concentrations of fluoride-containing wastewater into the environment. Subsequently, the discharge of high fluoride effluent serves as a threat to human life as well as the ecological ability to sustain life. This article analyses the advantages and drawbacks of some fluoride remediation technologies such as precipitation and flocculation, membrane technology, ion exchange technology, and adsorption technology. Among them, adsorption technology is considered the obvious choice and the best applicable technology. As such, several adsorbents with high fluoride adsorption capacity such as modified alumina, metal oxides, biomass, carbon-based materials, metal-organic frameworks, and other adsorption materials including their characteristics have been comprehensively summarized. Additionally, different adsorption conditions of the various adsorbents, such as pH, temperature, initial fluoride concentration, and contact time have been discussed in detail. The study found out that the composite synergy between different materials, morphological and structural control, and the strengthening of their functional groups can effectively improve the ability of the adsorbents for removing fluoride. This study has prospected the direction of various adsorbents for removing fluoride in wastewater, which would serve as guiding significance for future research in the field.
Collapse
Affiliation(s)
- Kuilin Wan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Boyan Ma
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xuanjie Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhixuan Luo
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
18
|
Pathirannehe P, Fernando T, Rajapakse C. Removal of Fluoride from Drinking Water Using Protonated Glycerol Diglycidyl Ether Cross-Linked Chitosan Beads. CHEMISTRY & CHEMICAL TECHNOLOGY 2021. [DOI: 10.23939/chcht15.02.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, physically and chemically modified chitosan; protonated glycerol diglycidyl ether cross-linked chitosan beads (GDCLCB/H+) were prepared and characterized using FTIR and SEM. The optimum defluoridation capacity (DC) of GDCLCB/H+ was observed at the initial F- ion concentration of 15 mg/l, adsorbent dosage of 0.6 g, contact time of 30 min and pH of the solution was in the range of 5–7 at 303 ± 2 K. The equilibrium adsorption data fitted well with Langmuir and Freundlich isotherm models. The maximum adsorption capacity (q0), obtained from Langmuir isotherm for F-adsorption was found to be 2000 mg/kg, which was significantly higher than that of unmodified chitosan (192.3 mg/kg) and most of the chitosan-based sorbents reported in the literature. Water samples collected from Medawachchiya, Sri Lanka, were treated with the adsorbents and the results suggested that GDCLCB/H+ could be used as an effective defluoridation agent.
Collapse
|
19
|
Li X, Yu X, Liu L, Yang J, Liu S, Zhang T. Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and manganese. RSC Adv 2021; 11:16201-16215. [PMID: 35479140 PMCID: PMC9031825 DOI: 10.1039/d1ra02028e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 01/30/2023] Open
Abstract
Aiming at the problem of excessive fluorine, iron, and manganese pollution in groundwater in mining areas, a serpentine-loaded hydroxyapatite (Srp/HAP) composite adsorbent was prepared by wet chemical coprecipitation. The preparation conditions of the Srp/HAP composite adsorbent were explored, Srp/HAP was microscopically characterized, and the adsorption performance and adsorption mechanism of the Srp/HAP composite adsorbent for F−, Fe2+ and Mn2+ were analyzed. The results showed that the optimal preparation conditions for the composite particles were as follows: solid–liquid ratio of Srp to calcium nitrate solution 20%, aging time 20 h, calcination temperature 180 °C, and calcination time 90 min. Compact Srp/HAP composite adsorbent particles were successfully prepared, and both the lamellar crimp structure of the Srp surface and the problem of HAP surface agglomeration were resolved. After loading, the specific surface area and pore volume of the particles significantly increased, and the surface pore structure improved, which is conducive to the simultaneous adsorption and removal of fluorine, iron and manganese. The optimal reaction conditions for Srp/HAP treatment of composite water samples with F−, Fe2+ and Mn2+ mass concentrations of 5 mg L−1, 20 mg L−1 and 5 mg L−1, respectively, are as follows: dosage of Srp/HAP 3 g L−1, pH 7, temperature 35 °C, and reaction time 150 min. Under these conditions, the removal rates of F−, Fe2+ and Mn2+ were 98.6%, 99.9% and 99.8%, respectively. The quasi-second-order kinetic model and Langmuir isothermal adsorption model described the adsorption process of F−, Fe2+ and Mn2+ by the composite particles well. The adsorption process includes both surface physical adsorption and chemical adsorption. Chemical adsorption is mainly characterized by ion exchange and surface complexation. The Srp/HAP composite particles can be used as an excellent adsorbent for the treatment of groundwater containing fluorine, iron and manganese ions in mining areas. A new adsorbent Srp/HAP for simultaneous removal of fluoride, iron and manganese was prepared, characterized and analyzed.![]()
Collapse
Affiliation(s)
- Xilin Li
- School of Civil Engineering, Liaoning Technical University No. 88 Yulong Road Fuxin Liaoning Province 123000 China
| | - Xiaowan Yu
- School of Civil Engineering, Liaoning Technical University No. 88 Yulong Road Fuxin Liaoning Province 123000 China
| | - Ling Liu
- School of Civil Engineering, Liaoning Technical University No. 88 Yulong Road Fuxin Liaoning Province 123000 China
| | - Jianlin Yang
- School of Materials Science and Engineering, Liaoning Technical University No. 47 Zhonghua Road Fuxin Liaoning Province 123000 China
| | - Siyuan Liu
- School of Civil Engineering, Liaoning Technical University No. 88 Yulong Road Fuxin Liaoning Province 123000 China
| | - Tianyi Zhang
- School of Civil Engineering, Liaoning Technical University No. 88 Yulong Road Fuxin Liaoning Province 123000 China
| |
Collapse
|
20
|
Fernando MS, Wimalasiri AKDVK, Dziemidowicz K, Williams GR, Koswattage KR, Dissanayake DP, de Silva KMN, de Silva RM. Biopolymer-Based Nanohydroxyapatite Composites for the Removal of Fluoride, Lead, Cadmium, and Arsenic from Water. ACS OMEGA 2021; 6:8517-8530. [PMID: 33817513 PMCID: PMC8015138 DOI: 10.1021/acsomega.1c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 05/25/2023]
Abstract
In this study, hydroxyapatite (HAP) nanocomposites were prepared with chitosan (HAP-CTS), carboxymethyl cellulose (HAP-CMC), alginate (HAP-ALG), and gelatin (HAP-GEL) using a simple wet chemical in situ precipitation method. The synthesized materials were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, and thermogravimetric analysis. This revealed the successful synthesis of composites with varied morphologies. The adsorption abilities of the materials toward Pb(II), Cd(II), F-, and As(V) were explored, and HAP-CTS was found to have versatile adsorption properties for all of the ions, across a wide range of concentrations and pH values, and in the presence of common ions found in groundwater. Additionally, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy confirmed the affinity of HAP-CTS toward multi-ion mixture containing all four ions. HAP-CTS was hence engineered into a more user-friendly form, which can be used to form filters through its combination with cotton and granular activated carbon. A gravity filtration study indicates that the powder form of HAP-CTS is the best sorbent, with the highest breakthrough capacity of 3000, 3000, 2600, and 2000 mL/g for Pb(II), Cd(II), As(V), and F-, respectively. Hence, we propose that HAP-CTS could be a versatile sorbent material for use in water purification.
Collapse
Affiliation(s)
- M. Shanika Fernando
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - A. K. D. V. K. Wimalasiri
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Karolina Dziemidowicz
- UCL
School of Pharmacy, University College London, 29−39 Brunswick Square, London WCIN 1AX, U.K.
| | - Gareth R. Williams
- UCL
School of Pharmacy, University College London, 29−39 Brunswick Square, London WCIN 1AX, U.K.
| | - K. R. Koswattage
- Faculty
of Technology, Sabaragamuwa University of
Sri Lanka, P.O. Box 02, Belihuloya 70140, Sri
Lanka
| | - D. P. Dissanayake
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - K. M. Nalin de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Rohini M. de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
21
|
Gan CD, Jia YB, Yang JY. Remediation of fluoride contaminated soil with nano-hydroxyapatite amendment: Response of soil fluoride bioavailability and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124694. [PMID: 33278725 DOI: 10.1016/j.jhazmat.2020.124694] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Nano-hydroxyapatite (NHAP), possessing high defluoridation capacity, has been widely used to remove fluoride (F) from polluted water, but little is known about how it affects the bioavailability and toxicity of soil F towards plants. Here, the impact of NHAP (2% w/w) amendment on immobilization, speciation and accumulation of F was studied in a soil-plant system. The results revealed that the NHAP amendment worked effectively to reduce levels of water-soluble F (37.3%-87.8%) and increase available P (76.6%-147%). X-ray photoelectron spectroscopy analysis indicated that the formation of insoluble CaF2 and the ion exchange of F- with OH- into NHAP might be involved in the mechanism of F immobilization and soil pH elevation. Exposure to NHAP significantly decreased the abundance of Cyanobacteria in tested soils, and Gemmatimonadetes abundance in bulk soil was significantly higher than that in rhizosphere soil at 1,000 mg kg-1 F spiked level. Additionally, NHAP amendment decreased F accumulation in wheat shoots (9.10%-18.7%) and roots (3.88%-22.4%), which could mainly be attributed to the reduction of soil bioavailable F and the supplement of Ca from NHAP. These results suggest that NHAP could be a promising amendment to be applied to acidic soil contaminated with F.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Yan-Bo Jia
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| |
Collapse
|
22
|
Dehghani MH, Karri RR, Lima EC, Mahvi AH, Nazmara S, Ghaedi AM, Fazlzadeh M, Gholami S. Regression and mathematical modeling of fluoride ion adsorption from contaminated water using a magnetic versatile biomaterial & chelating agent: Insight on production & experimental approaches, mechanism and effects of potential interferers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Younis AM, Elkady EM, Saleh SM. Novel eco-friendly amino-modified nanoparticles for phenol removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30694-30705. [PMID: 32468377 DOI: 10.1007/s11356-020-09313-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Herein, the impact of using dried Caulerpa prolifera nanoparticles and silica-coated Caulerpa prolifera nanoparticles for the removal of phenol from aqueous solution has been investigated. The chemical structure and morphology of both dried Caulerpa prolifera nanoparticles and silica-coated Caulerpa prolifera nanoparticles were characterized by using Fourier-transform infrared spectroscopy (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), and transmission electron microscope (TEM). Batch mode experiments were conducted depending on adsorbent dosage, pH, contact time, and initial phenol concentration. In order to investigate the adsorption mechanism of the phenol molecules to the surface of the nanoparticles, kinetic models including pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were executed. To describe the equilibrium isotherms, Langmuir and Freundlich isotherms were analyzed. However, the Langmuir isotherm model was agreed to be more significant with the obtained experimental data.
Collapse
Affiliation(s)
- Alaa M Younis
- Aquatic Environment Department, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| | - Eman M Elkady
- Marine Chemistry Lab, National Institute of Oceanography & Fisheries, Suez, Egypt
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| |
Collapse
|
24
|
Arcibar-Orozco JA, Flores-Rojas AI, Rangel-Mendez JR, Díaz-Flores PE. Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2020; 41:1554-1567. [PMID: 30372664 DOI: 10.1080/09593330.2018.1542033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Today, fluoride represents one of the most often found, and resilient, pollutants threatening the health of millions of people around the globe. The use of biosorbents is an interesting alternative technique for the removal of fluorine-ions. Chitosan is a natural biopolymer with surface groups capable of removing fluorine; however, their lack of mechanical stability restricts its application. In the present work, we proposed that such limitations can be overcame by forming a composite with zeolite (ZCC). A proper zeolite-to-chitosan ration must be kept to prevent a collapse of the material's capacity. Two ZCCs at ratios of 1:1 and 1:3 were formed and tested for the removal of fluoride from aqueous solution. The composites were characterized by Electron Microscopy, FT-IR, N2 physisorption, and potentiometric titration techniques. During fluoride adsorption studies, the effects of pH and temperature were analysed and thermodynamic parameters for adsorption were calculated. The results demonstrated that there is a chemical interaction between the zeolite and chitosan components leading to a superior adsorption performance than if there was a simple physical mixture of the precursors. Maximum adsorption capacities were reached using the composite material with the lowest chitosan content due to reduced constriction of the zeolite pores and a better dispersion of overall the adsorption sites. Both pH and temperature had a significant, and negative, impact on the adsorption; these effects were discussed. The present work represents an advance in the development of functional biocomposites for the removal of pollutants from aqueous solutions.
Collapse
|
25
|
Sen K, Sharma P, Chauhan K. Chloroacetyl‐Mediated Modification of Chitosan by Tannic Acid to Synthesize Economical Tanninate‐Chitosan and Its Use in Fluoride Ions Adsorption from Aqueous Solution. ChemistrySelect 2020. [DOI: 10.1002/slct.201903965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kshipra Sen
- School of Chemistry Shoolini University Solan 173229 India
| | - Praveen Sharma
- School of Chemistry Shoolini University Solan 173229 India
- Himachal Pradesh State Pollution Control Board Shimla 171009 India
| | - Kalpana Chauhan
- Department of Chemistry, School of Engineering and Technology Central University of Haryana Mahendergarh 123031 India
| |
Collapse
|
26
|
Li R, Tian X, Ashraf I, Chen B. Fluoride removal using a chelating resin containing phosphonic-sulfonic acid bifunctional group. J Chromatogr A 2020; 1613:460697. [DOI: 10.1016/j.chroma.2019.460697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/26/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
|
27
|
Sobeih MM, El-Shahat MF, Osman A, Zaid MA, Nassar MY. Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions. RSC Adv 2020; 10:25567-25585. [PMID: 35518600 PMCID: PMC9055320 DOI: 10.1039/d0ra02340j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022] Open
Abstract
We herein have developed a mild approach for the fabrication of glauconite clay (G)-modified chitosan (CS) nanocomposites by the combination of a simple blending and crosslinking method. The chitosan was modified with ethylenediaminetetraacetic acid (EDTA), glutaraldehyde (GL), sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB). The as-prepared composites were identified using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), nitrogen physical adsorption (BET), atomic absorption spectrophotometry (AA), and thermal gravimetric analysis (TGA). The adsorption activities of the as-prepared materials were assessed for the removal of fluoride ions from aqueous media using a batch technique. Raw glauconite (G), GL-CS/G, SDS-CS/G, EDTA-GL-CS/G, and CTAB-CS/G adsorbents displayed maximum adsorption capacity values of 1.15, 4.31, 4.55, 6.90, and 9.03 mg g−1, respectively. The adsorption results were well described by employing the pseudo-second-order kinetic and Langmuir isotherm models. The estimated thermodynamic constants indicated that the F− ion adsorption was a spontaneous, physisorption process. Furthermore, the modified chitosan adsorbents are good candidates for the adsorptive elimination of F− ions from aqueous solutions, according to their reusability, high stability, good adsorption capacity, and applicability for actual field water samples. We herein have developed a mild approach for the fabrication of glauconite clay (G)-modified chitosan (CS) nanocomposites by the combination of a simple blending and crosslinking method.![]()
Collapse
Affiliation(s)
- Marwa M. Sobeih
- Chemistry Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | - M. F. El-Shahat
- Chemistry Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | - A. Osman
- Geology Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | - M. A. Zaid
- Abu-Zaabal Company for Fertilizer and Chemical Company (AZFC)
- EL-Qalyubia
- Egypt
| | - Mostafa Y. Nassar
- Chemistry Department
- Faculty of Science
- Benha University
- Benha 13815
- Egypt
| |
Collapse
|
28
|
Ravulapalli S, Ravindhranath K. Novel adsorbents possessing cumulative sorption nature evoked from Al2O3 nanoflakes, C.urens seeds active carbon and calcium alginate beads for defluoridation studies. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
29
|
Fernando MS, Wimalasiri AKDVK, Ratnayake SP, Jayasinghe JMARB, William GR, Dissanayake DP, de Silva KMN, de Silva RM. Improved nanocomposite of montmorillonite and hydroxyapatite for defluoridation of water. RSC Adv 2019; 9:35588-35598. [PMID: 35528100 PMCID: PMC9074413 DOI: 10.1039/c9ra03981c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
A novel hydroxyapatite montmorillonite (HAP-MMT) nanocomposite system was synthesized using a simple wet chemical in situ precipitation method. Neat nano hydroxyapatite (HAP) was also synthesized for comparison. The characterization of the materials was carried out using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) isotherms to study the functional groups, morphology, crystallinity and the surface area respectively. Batch adsorption studies and kinetic studies on fluoride adsorption were conducted for the HAP-MMT system and for neat HAP. The effect of parameters such as contact time, pH, initial concentration, temperature, and thermodynamic parameters and the effect of coexisting ions on fluoride adsorption by HAP-MMT were studied. Results of the isotherm experiments were fitted to four adsorption isotherm models namely Langmuir, Freundlich, Temkin and Dubinin Radushkevich. Fluoride adsorption over HAP-MMT fitted to the Freundlich adsorption isotherm model and showed more than two-fold improved adsorption capacity (16.7 mg g−1) compared to neat HAP. The best-fitting kinetic model for both adsorbents was found to be pseudo second order. Calculated thermodynamic parameters indicated that the fluoride adsorption by HAP-MMT is more favorable compared to that on HAP within the temperature range of 27 °C–60 °C. Improved fluoride adsorption by HAP-MMT is attributed to the exfoliated nature of HAP-MMT. Gravity filtration studies carried out using a 1.5 ppm fluoride solution, which is closer to the ground water fluoride concentrations of Chronic Kidney Disease of unknown etiology (CKDu) affected areas in Sri Lanka, resulted in a 1600 ml g−1 break through volume indicating the potential of HAP-MMT to be used in real applications. A novel hydroxyapatite montmorillonite (HAP-MMT) nanocomposite was synthesized using a simple wet chemical in situ precipitation method. This nanocomposite showed improved adsorption properties towards fluoride ions in water.![]()
Collapse
Affiliation(s)
- M. Shanika Fernando
- Centre for Advanced Materials and Devices (CAMD)
- Department of Chemistry
- University of Colombo
- Sri Lanka
| | - A. K. D. V. K. Wimalasiri
- Centre for Advanced Materials and Devices (CAMD)
- Department of Chemistry
- University of Colombo
- Sri Lanka
| | - S. P. Ratnayake
- Sri Lanka Institute of Nanotechnology (SLINTEC)
- Nanotechnology and Science Park
- Sri Lanka
| | - J. M. A. R. B. Jayasinghe
- Centre for Advanced Materials and Devices (CAMD)
- Department of Chemistry
- University of Colombo
- Sri Lanka
| | | | - D. P. Dissanayake
- Centre for Advanced Materials and Devices (CAMD)
- Department of Chemistry
- University of Colombo
- Sri Lanka
| | - K. M. Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD)
- Department of Chemistry
- University of Colombo
- Sri Lanka
| | - Rohini M. de Silva
- Centre for Advanced Materials and Devices (CAMD)
- Department of Chemistry
- University of Colombo
- Sri Lanka
| |
Collapse
|
30
|
Liu W, Zhang L, Zhang J, Liu X, Huang W, Huang D, Zheng Z. Effects of modified sediments from a eutrophic lake in removing phosphorus and inhibiting phosphatase activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1723-1732. [PMID: 30448953 DOI: 10.1007/s11356-018-3754-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Phosphorus is one of the main limiting and strong influencing factors of eutrophication, and phosphorus controlling in lake is of great significance for eutrophication. To do this, sediment materials were taken from Dianchi Lake, a typically eutrophic lake, and modified by hexadecyltrimethylammonium bromide (CTAB) and ZnSO4 to remove phosphorus and inhibit alkaline phosphatase activity (APA). Results indicated that phosphorus removal efficiencies of sediments modified by CTAB (S-CTAB), ZnSO4 (S-Zn), and oxidized sediments (OS) were higher than that of the raw sediment (RS). Ability to absorb phosphorus varied, following the order S-Zn>S-CTAB>OS>RS. Sorption was influenced by ionic strength, with the former decreasing with the increase of the latter. Freundlich model well described the sorption isotherm, with an R2 ranging from 0.9168 to 0.9958. Furthermore, compared with the raw sediments, the maximum phosphorus sorption capacities of S-Zn and S-CTAB increased by 12.2% and 124.5%, respectively. Results of desorption studies suggest that the desorption rate of S-Zn was from 3.88 to 13.76%, lower than that of other sediment materials. APA was inhibited by S-CTAB and S-Zn at the same time, with inhibition rates from 29.6% and 61.0% when the concentrations of S-CTAB and S-Zn were 10 nmol L-1 and 0.2 nmol L-1, respectively. This study provides new insights into phosphorus removal and phosphatase activity inhibition in water treatment.
Collapse
Affiliation(s)
- Wenli Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Liangjie Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| | - Xing Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Wei Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Affiliation(s)
- Feigao Xu
- College of Chemistry, Nanchang University, Nanchang, China
| | - Changyi Jiang
- School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dan Li
- School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
George S, Mehta D, Saharan VK. Application of hydroxyapatite and its modified forms as adsorbents for water defluoridation: an insight into process synthesis. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fluorosis is a major scourge in many countries caused by prolonged consumption of drinking water with high fluoride content found in groundwater resources. Hydroxyapatite (Hap) and its composite forms are excellent biomaterials that recently gained attention as efficient adsorbents, owing to its physical and chemical nature as it can substitute both cationic and anionic complexes present in an aqueous solution in its atomic arrangement. Its biological nature, biocompatibility and biodegradability along with its chemical characteristics such as crystallinity, stability, ion adsorption capability and highly specific catalytic activity make it suitable for a variety of applications especially in water treatment for fluoride removal. This review describes various techniques for synthesis of a wide variety of biogenic, synthetic, composite and modified forms of Hap for application in water defluoridation. Hap derived from natural sources or synthesized using conventional methods, hydrothermal, sol-gel or advanced sonication-cum-precipitation technique varied in terms of its crystallinity, structure, size, etc., which affect the fluoride removal capacity. The advantage and disadvantages of various synthesis methods, process parameters and product characteristics have been compiled, which may help to identify a suitable synthesis method for a desired Hap product for potential application and future perspectives in water treatment.
Collapse
Affiliation(s)
- Suja George
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur 302017 , India
| | - Dhiraj Mehta
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur 302017 , India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur 302017 , India
| |
Collapse
|
34
|
Huang W, Chen X, Wang K, Jiang X. Seasonal characteristics of phosphorus sorption by sediments from plain lakes with different trophic statuses. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172237. [PMID: 30224992 PMCID: PMC6124047 DOI: 10.1098/rsos.172237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) sorption in sediments plays a significant role in trophic status of a lake. This study investigated the characteristics of P sorption in sediments from three lakes with different trophic statuses (moderately eutrophic, lightly eutrophic and moderately trophic) through kinetic, batch equilibrium and thermodynamic experiments. Results show that pseudo-second-order kinetics best describe P sorption in sediments from the three lakes. Fitting by modified Langmuir and Freundlich isotherms indicates that the moderately trophic lake sediment has higher sorption capacity (maximum of 0.848 mg g-1 at 35°C) than the sediments of the other two lakes at different temperatures (5, 15, 25 and 35°C). Thermodynamic results indicate that the processes of P sorption of the three sediments are spontaneous, entropy-driven and endothermic reactions. The risk of P release in sediments was analysed according to the calculated results of isotherms combined with the change in P fraction. Sediments from the moderately eutrophic lake act as a source in summer. The lightly eutrophic and moderately trophic lakes act as sources in spring and winter, and a pool in summer and autumn, respectively. Furthermore, the amounts of reductant-soluble P, calcium-bound P and iron-bound P are significantly related to the sorption capacity of sediments from the three lakes (p < 0.05). The different sediments have different P release risk, and P fraction in sediment is one of the significant factors of P sorption.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Xing Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Kun Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| |
Collapse
|
35
|
Tang Q, Duan T, Li P, Zhang P, Wu D. Enhanced Defluoridation Capacity From Aqueous Media via Hydroxyapatite Decorated With Carbon Nanotube. Front Chem 2018; 6:104. [PMID: 29696138 PMCID: PMC5904275 DOI: 10.3389/fchem.2018.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022] Open
Abstract
In this work, the potential of a novel hydroxyapatite decorated with carbon nanotube composite (CNT-HAP) for fluoride removal was investigated. The synthesized CNT-HAP composite was systematically characterized by X-ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM) and Brunauer–Emmett–Teller(BET). Batch adsorption experiments were conducted to investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has a maximum adsorption capacity of 11.05 mg·g−1 for fluoride, and the isothermal adsorption data were fitted by the Freundlich model to calculate the thermodynamic parameters. Thermodynamic analysis implies that the adsorption of fluoride on CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows pseudo-second-order model. The effects of solution pH, co-existing anions and reaction temperature on defluorination efficiency were examined to optimize the operation conditions for fluoride adsorption. It is found that the optimized pH-value for fluoride removal by CNT-HAP composite is 6. In addition, among five common anions studied in this work, the presence of HCO3- and PO43- could considerably affect the fluoride removal by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal by CNT-HAP is analyzed, and an anion exchange process is proposed.
Collapse
Affiliation(s)
- Qingzi Tang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Tongdan Duan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Hassan AF, Hrdina R. Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies. Int J Biol Macromol 2018; 109:507-516. [DOI: 10.1016/j.ijbiomac.2017.12.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 01/12/2023]
|
37
|
Dubey S, Agrawal M, Gupta AB. Advances in coagulation technique for treatment of fluoride-contaminated water: a critical review. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fluoride contamination of groundwater has become a major concern worldwide, resulting in serious medical conditions such as dental and skeletal fluorosis. Consequently, the WHO recommends that drinking water should not contain more than 1.5 mg/l of fluoride. Various defluoridation techniques such as coagulation, reverse osmosis, activated alumina adsorption, and biosorbent adsorption have been developed. Adsorption through the activated alumina and biosorbent process is not cost effective and has regeneration problems, and the reverse osmosis process has the high initial cost which makes it unacceptable for developing countries. Coagulation is a commonly employed field technology for defluoridation, which involves the addition of aluminum salts, lime, and bleaching powder followed by rapid mixing, flocculation, sedimentation, and filtration but suffers from a limitation of high residual aluminum in treated water. This paper critically reviews the recent developments in the coagulation technique for defluoridation along with its comparison to other defluoridation techniques. The review describes the pertinent gaps in the process and throws open suggestions for extending research by citing the recent studies which may lead to the revival of the process. The description about the suspension of alumino-fluoro complexes that constitute a substantial part of the residual aluminum after alum treatment has been narrated in the paper that helps in a deeper understanding of the defluoridation mechanism. To make the process highly suitable for communities, appropriate technological interventions, such as converting it to a continuous mode of operation, replacing alum with poly-aluminum chloride (PAC), and attaching a micro-filtration unit in series of the existing process, can be done. Also, using PAC as a coagulant with sand filtration has to be considered for making the process more efficient.
Collapse
Affiliation(s)
- Swati Dubey
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur 30201 , India
| | - Madhu Agrawal
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur 30201 , India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering , Malaviya National Institute of Technology , Jaipur 30201 , India
| |
Collapse
|
38
|
Nagaraj A, Munusamy MA, Ahmed M, Suresh Kumar S, Rajan M. Hydrothermal synthesis of a mineral-substituted hydroxyapatite nanocomposite material for fluoride removal from drinking water. NEW J CHEM 2018. [DOI: 10.1039/c8nj02401d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mineral substituted hydroxyapatite (mHAp) nanocomposite was synthesized and it shows high fluoride adsorption capacity.
Collapse
Affiliation(s)
- Ammavasi Nagaraj
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| | - Murugan A. Munusamy
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Mukhtar Ahmed
- Department of Zoology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - S. Suresh Kumar
- Department of Medical Microbiology and Parasitology
- Universiti Putra
- Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| |
Collapse
|
39
|
Wu T, Mao L, Wang H. Adsorption of fluoride from aqueous solution by using hybrid adsorbent fabricated with Mg/Fe composite oxide and alginate via a facile method. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Chen J, Shu C, Wang N, Feng J, Ma H, Yan W. Adsorbent synthesis of polypyrrole/TiO2 for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism. J Colloid Interface Sci 2017; 495:44-52. [DOI: 10.1016/j.jcis.2017.01.084] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/04/2017] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
41
|
Chen Y, Shen C, Rashid S, Li S, Ali BA, Liu J. Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water. J Colloid Interface Sci 2017; 491:207-215. [DOI: 10.1016/j.jcis.2016.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022]
|
42
|
He J, Chen K, Cai X, Li Y, Wang C, Zhang K, Jin Z, Meng F, Wang X, Kong L, Liu J. A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water. J Colloid Interface Sci 2017; 490:97-107. [DOI: 10.1016/j.jcis.2016.11.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
|
43
|
Zhang C, Li Y, Jiang Y, Wang TJ. Size-Dependent Fluoride Removal Performance of a Magnetic Fe3O4@Fe–Ti Adsorbent and Its Defluoridation in a Fluidized Bed. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chang Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yingzhen Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanping Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ting-Jie Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Zhu T, Zhu T, Gao J, Zhang L, Zhang W. Enhanced adsorption of fluoride by cerium immobilized cross-linked chitosan composite. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Defluoridation of water by Tea - bag model using La 3+ modified synthetic resin@chitosan biocomposite. Int J Biol Macromol 2016; 91:1002-9. [DOI: 10.1016/j.ijbiomac.2016.05.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/15/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022]
|
46
|
He J, Zhang K, Wu S, Cai X, Chen K, Li Y, Sun B, Jia Y, Meng F, Jin Z, Kong L, Liu J. Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2016; 303:119-30. [PMID: 26530888 DOI: 10.1016/j.jhazmat.2015.10.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 05/21/2023]
Abstract
Novel ultralong hydroxyapatite (HAP) nanowires were successfully prepared for fluoride removal for the first time. The fluoride adsorption on the HAP nanowires was studied on a batch mode. The results revealed that the adsorption data could be well described by the Freundlich model, and the adsorption kinetic followed the pseudo-second-order model. The maximum of adsorption capacity was 40.65 mg/g at pH 7.0 when the fluoride concentration is 200mg/L. The thermodynamic parameters suggested that the adsorption of fluoride was a spontaneous endothermic process. The FT-IR, XPS and Zeta potential analysis revealed that both anion exchange and electrostatic interactions were involved in the adsorption of fluoride. Furthermore, the HAP nanowires were made into HAP membrane through a simple process of suction filtration. Membrane filtration experiments revealed that the fluoride removal capabilities depended on the membrane thickness, flow rate and initial concentration of fluoride. The as-prepared membrane could remove fluoride efficiently through continues filtration. The filtered water amount could reach 350, 192, and 64 L/m(2) when the fluoride concentrations were 4, 5 and 8 ppm, respectively, using the HAP membrane with only 150 μm thickness. The as-synthesized ultralong HAP nanowires were thus demonstrated to be very effective and biocompatible adsorbents for fluoride removal from contaminated water.
Collapse
Affiliation(s)
- Junyong He
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kaisheng Zhang
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shibiao Wu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Xingguo Cai
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kai Chen
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yulian Li
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Bai Sun
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Yong Jia
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Fanli Meng
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Zhen Jin
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Lingtao Kong
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Jinhuai Liu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
47
|
Suriyaraj SP, Selvakumar R. Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water. RSC Adv 2016. [DOI: 10.1039/c5ra24789f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Various nanomaterials for fluoride and nitrate removal from contaminated water.
Collapse
Affiliation(s)
- S. P. Suriyaraj
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004
- India
| | - R. Selvakumar
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004
- India
| |
Collapse
|
48
|
Pandi K, Viswanathan N. Synthesis and applications of eco-magnetic nano-hydroxyapatite chitosan composite for enhanced fluoride sorption. Carbohydr Polym 2015; 134:732-9. [DOI: 10.1016/j.carbpol.2015.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
49
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
50
|
Velazquez-Jimenez LH, Vences-Alvarez E, Flores-Arciniega JL, Flores-Zuñiga H, Rangel-Mendez JR. Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: A review. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|