1
|
Li C, Xia Y, Li M, Zhang T. ARTP mutagenesis of phospholipase D-producing strain Streptomyces hiroshimensis SK43.001, and its enzymatic properties. Heliyon 2022; 8:e12587. [PMID: 36619468 PMCID: PMC9816975 DOI: 10.1016/j.heliyon.2022.e12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022] Open
Abstract
Phospholipase D (PLD) is a group of enzymes that act on phospholipid molecules, which is widely used in the fields of food and medicine. PLD is extracted from animals and plants with low transesterification activity and high price. Therefore, it is benefit to screen an efficient PLD producing strain from microorganisms. A highly productive strain of PLD with transphosphatidylation activity, named Streptomyces hiroshimensis SK43.001, was screened from soil in our laboratory and mutated using atmospheric room temperature plasma (ARTP). A mutant strain SK43.001-11 with the highest enzyme activity and superior genetic stability was obtained, and its fermentation enzyme activity was 5.3 U/mL, which was 82% increased comparing to wild strain. The purification of PLD showed that the specific enzyme activity increased to 49.48 U/mg, which was 54.37-fold higher than that of the crude enzyme, with a recovery of 32.31%. In addition, enzymatic properties of PLD have revealed that the optimal pH and temperature were 7.0 and 60 °C, respectively. Metal ion Mg2+ and surfactant Triton X-100 made the enzymatic activity increased by 16% and 100%, respectively. The reaction kinetic parameters showed that the mutant PLD had higher affinity for the substrate of egg PC and better catalytic efficiency with K m, V max and K cat of 30.20 mmol/L, 99.70 μmol/min and 76.33 s-1, respectively. This study may provide important inspiration for obtaining high enzyme activity strains with PLD.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China,Corresponding author.
| |
Collapse
|
2
|
Zhang J, Zhu B, Xu X, Liu Y, Li Q, Li Y, Lu F. Remodeling Bacillus amyloliquefaciens Cell Wall Rigidity to Reduce Cell Lysis and Increase the Yield of Heterologous Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10552-10562. [PMID: 35984403 DOI: 10.1021/acs.jafc.2c04454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacillus amyloliquefaciens has great potential as a host for heterologous protein production, but its severe autolytic behavior has precluded its industrial application to date. Because d,l-endopeptidase activity-guided cell wall rigidity is considered essential for autolysis resistance, we investigated the effects of d,l-endopeptidase genes lytE, lytF, cwlO, and cwlS play on the growth, lysis, and morphology remodeling of B. amyloliquefaciens strain TCCC11018. Individual and combinatorial deletion of lytE, lytF, and cwlS enhanced the cell growth and delayed cell lysis. For the best mutant with the lytF and cwlS double deletion, the viable cell number at 24 h increased by 11.90% and the cell wall thickness at 6 h increased by 25.87%. Transcriptomic and proteomic analyses indicated that the improvement was caused by enhanced peptidoglycan synthesis. With the lytF and cwlS double deletion, the extracellular green fluorescent protein and phospholipase D expression levels increased by 113 and 55.89%, respectively. This work broadens our understanding of the relationship between d,l-endopeptidases and B. amyloliquefaciens cell characteristics, which provides an effective strategy to improve the heterologous protein expression in B. amyloliquefaciens-based cell factories.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Baoyue Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qinggang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
3
|
Zhang P, Gong JS, Qin J, Li H, Hou HJ, Zhang XM, Xu ZH, Shi JS. Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Crit Rev Biotechnol 2021; 41:1257-1278. [PMID: 33985392 DOI: 10.1080/07388551.2021.1921690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Owing to their numerous nutritional and bioactive functions, phospholipids (PLs), which are major components of biological membranes in all living organisms, have been widely applied as nutraceuticals, food supplements, and cosmetic ingredients. To date, PLs are extracted solely from soybean or egg yolk, despite the diverse market demands and high cost, owing to a tedious and inefficient manufacturing process. A microbial-based manufacturing process, specifically phospholipase D (PLD)-based biocatalysis and biotransformation process for PLs, has the potential to address several challenges associated with the soybean- or egg yolk-based supply chain. However, poor enzyme properties and inefficient microbial expression systems for PLD limit their wide industrial dissemination. Therefore, sourcing new enzyme variants with improved properties and developing advanced PLD expression systems are important. In the present review, we systematically summarize recent achievements and trends in the discovery, their structural properties, catalytic mechanisms, expression strategies for enhancing PLD production, and its multiple applications in the context of PLs. This review is expected to assist researchers to understand current advances in this field and provide insights for further molecular engineering efforts toward PLD-mediated bioprocessing.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Hai-Juan Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Li M, Zhou Y, Duan X, Zhou L, Zhang T. Characterization of a phospholipase D from Streptomyces cinnamoneum SK43.003 suitable for phosphatidylserine synthesis. Biotechnol Appl Biochem 2021; 69:1917-1928. [PMID: 34585426 DOI: 10.1002/bab.2257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/19/2021] [Indexed: 11/11/2022]
Abstract
A phospholipase D high producing strain with transphosphatidylation activity that is suitable for phosphatidylserine synthesis was screened by our laboratory and named as Streptomyces cinnamoneum SK43.003. The enzyme structural and biochemical properties were investigated using the molecular biology method. A 1521-bp fragment of the phospholipase D gene from Streptomyces cinnamoneum SK43.003 was amplified by PCR and encoded for 506 amino acids. The primary structure contained two conserved HKD and GG/S motifs. The pld gene was cloned and expressed in Escherichia coli. The purified enzyme exhibited the highest activity at a pH value of 6.0 andtemperature of 60°C. The enzyme was stable within a pH range of 4-7 for 24 h or at temperatures below 50°C. In addition, Triton X-100, Fe2+ , and Al3+ were beneficial to the enzyme activity, whereas Zn2+ and Cu2+ dramatically inhibited its activity. In a two-phase system, the enzyme could convert phosphatidylcholine to phosphatidylserine with a 92% transformation rate.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanfeng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoli Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Highly Efficient Extracellular Production of Recombinant Streptomyces PMF Phospholipase D in Escherichia coli. Catalysts 2020. [DOI: 10.3390/catal10091057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To achieve efficient bio-production of phospholipase D (PLD), PLDs from different organisms were expressed in E.coli. An efficient secretory expression system was thereby developed for PLD. First, PLDs from Streptomyces PMF and Streptomyces racemochromogenes were separately over-expressed in E.coli to compare their transphosphatidylation activity based on the synthesis of phosphatidylserine (PS), and PLDPMF was determined to have higher activity. To further improve PLDPMF synthesis, a secretory expression system suitable for PLDPMF was constructed and optimized with different signal peptides. The highest secretory efficiency was observed when the PLD * (PLDPMF with the native signal peptide Nat removed) was expressed fused with the fusion signal peptide PelB-Nat in E. coli. The fermentation conditions were also investigated to increase the production of recombinant PLD and 10.5 U/mL PLD was ultimately obtained under the optimized conditions. For the application of recombinant PLD to PS synthesis, the PLD properties were characterized and 30.2 g/L of PS was produced after 24 h of bioconversion when 50 g/L phosphatidylcholine (PC) was added.
Collapse
|
6
|
Immobilization of Phospholipase D on Silica-Coated Magnetic Nanoparticles for the Synthesis of Functional Phosphatidylserine. Catalysts 2019. [DOI: 10.3390/catal9040361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this study, silica-coated magnetic nanoparticles (Fe3O4/SiO2) were synthesized and applied in the immobilization of phospholipase D (PLDa2) via physical adsorption and covalent attachment. The immobilized PLDa2 was applied in the synthesis of functional phosphatidylserine (PS) through a transphophatidylation reaction. The synthesis process and characterizations of the carriers were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The optimum immobilization conditions were evaluated, and the thermal and pH stability of immobilized and free PLDa2 were measured and compared. The tolerance to high temperature of immobilized PLDa2 increased remarkably by 10°C. Furthermore, the catalytic activity of the immobilized PLDa2 remained at 40% after eight recycles, which revealed that silica-coated magnetic nanoparticles have potential application for immobilization and catalytic reactions in a biphasic system.
Collapse
|
7
|
Qin W, Wu C, Song W, Chen X, Liu J, Luo Q, Liu L. A novel high-yield process of phospholipase D-mediated phosphatidylserine production with cyclopentyl methyl ether. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine. J Biotechnol 2017; 249:51-58. [DOI: 10.1016/j.jbiotec.2017.03.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
|
9
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
10
|
Matsumoto Y, Sugimori D. Substrate recognition mechanism of Streptomyces phospholipase D and enzymatic measurement of plasmalogen. J Biosci Bioeng 2015; 120:372-9. [DOI: 10.1016/j.jbiosc.2015.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 01/10/2023]
|
11
|
Choojit S, Bornscheuer UT, Upaichit A, H-Kittikun A. Efficient phosphatidylserine synthesis by a phospholipase D fromStreptomycessp. SC734 isolated from soil-contaminated palm oil. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Saovanee Choojit
- Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Thailand
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry; University of Greifswald; Greifswald Germany
| | - Apichat Upaichit
- Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Thailand
| | - Aran H-Kittikun
- Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Thailand
| |
Collapse
|
12
|
Matsumoto Y, Mineta S, Murayama K, Sugimori D. A novel phospholipase B fromStreptomycessp. NA684 - purification, characterization, gene cloning, extracellular production and prediction of the catalytic residues. FEBS J 2013; 280:3780-96. [DOI: 10.1111/febs.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/24/2013] [Accepted: 05/21/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Yusaku Matsumoto
- Department of Symbiotic Systems Science and Technology; Graduate School of Symbiotic Systems Science and Technology; Fukushima University; Japan
| | - Shingo Mineta
- Department of Symbiotic Systems Science and Technology; Graduate School of Symbiotic Systems Science and Technology; Fukushima University; Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics; Graduate School of Biomedical Engineering; Tohoku University; Sendai Japan
| | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology; Graduate School of Symbiotic Systems Science and Technology; Fukushima University; Japan
| |
Collapse
|
13
|
Sharma R, Verma VV, Gupta R. Functional characterization of an extracellular keratinolytic protease, Ker AP from Pseudomonas aeruginosa KS-1: A putative aminopeptidase with PA domain. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Jiang F, Huang S, Imadad K, Li C. Cloning and expression of a gene with phospholipase B activity from Pseudomonas fluorescens in Escherichia coli. BIORESOURCE TECHNOLOGY 2012; 104:518-522. [PMID: 22078969 DOI: 10.1016/j.biortech.2011.09.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/09/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
A gene from Pseudomonasfluorescens BIT-18 encoding a protein with phospholipase B activity (Pf-PLB) was cloned in E. coli BL21 (DE3). The open reading frame consists of 1272 bp and potentially encodes a protein of 423 amino acid residues with a calculated molecular mass of 45.8 kDa. The nucleotide sequence of Pf-PLB is 45%, 42%, 41%, 40%, 33%, and 31% identical to that of Bifidobacterium animals, Mycobacterium parascrofulaceum, Acidobacterium capsulatum, Lactobacillus johnsonii, Moraxella bovis, and Moraxella catarrhalis, respectively. The His-tagged protein was purified by affinity chromatography and the eluted protein hydrolyzed both the 1- and 2-ester bond of phosphatidylcholine. The recombinant Pf-PLB had optimal activity at pH 6.0 and 30 °C, and it showed 20.1% higher efficiency in the conversion rate of the phosphorus content than the wild-type.
Collapse
Affiliation(s)
- Fangyan Jiang
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, PR China
| | | | | | | |
Collapse
|
15
|
Jiang F, Wang J, Kaleem I, Dai D, Zhou X, Li C. Degumming of vegetable oils by a novel phospholipase B from Pseudomonas fluorescens BIT-18. BIORESOURCE TECHNOLOGY 2011; 102:8052-8056. [PMID: 21715159 DOI: 10.1016/j.biortech.2011.05.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/01/2011] [Accepted: 05/17/2011] [Indexed: 05/31/2023]
Abstract
Pseudomonas fluorescens BIT-18 was isolated from soil near a vegetable oil factory and shown to produce a B-type phospholipase. The enzyme was partially purified by ammonium sulfate precipitation. Gas chromatography demonstrated that the enzyme preparation hydrolyzed both the 1- and 2-ester bonds of phosphatidylcholine. When degumming of soybean, rapeseed, and peanut oil was performed with this enzyme preparation, oils with phosphorous contents lower than 5mg/kg were obtained after 5h of enzyme treatment at 40°C. The enzyme preparation did not show lipase activity, thus free fatty acids were only generated from the phospholipids. Therefore, this novel phospholipase B is potentially useful for the refining of high-quality oils with attractive yields.
Collapse
Affiliation(s)
- Fangyan Jiang
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Simkhada JR, Cho SS, Choi HS, Kim SW, Lee HC, Sohng JK, Yoo JC. A new thermolabile alkaline phospholipase D from Streptomyces sp. CS628. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-010-0013-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
|
18
|
Mander P, Simkhada JR, Cho SS, Park SJ, Choi HS, Lee HC, Sohng JK, Yoo JC. A novel Ca2+-dependent phospholipase D from Streptomyces tendae, possessing only hydrolytic activity. Arch Pharm Res 2009; 32:1461-7. [PMID: 19898811 DOI: 10.1007/s12272-009-2017-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/30/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
An extracellular phospholipase D (PLD(St)) was purified from Streptomyces tendae by two successive chromatographic steps on Sepharose CL-6B and DEAE-Sepharose CL-6B. Molecular weight of the PLD(St) was estimated to be approximately 43 kDa by sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Maximal activity was at pH 8 and 60 degrees C, and the enzyme was stable at or below 60 degrees C and between pH 8 and 10, when assayed after 1.5 and 24 h, respectively. The enzyme activity had an absolute requirement of Ca(2+), and the maximum activity was at 2 mM CaCl(2). The Km and Vmax values for phosphatidyl choline were 0.95 mM and 810 micromol min(-1) mg(-1), respectively. More importantly, PLD(St) could not catalyze transphosphatidylation of glycerol, L-serine, myo-inositol and ethanolamine, which have been extensively used to evaluate the activity. The result strongly suggests that PLD( St ) does not have the transphosphatidylation activity, thereby making it the first Streptomyces PLD possessing only hydrolytic activity. PLD(St) may therefore be a novel type of PLD enzyme.
Collapse
Affiliation(s)
- Poonam Mander
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|