1
|
Ung KL, Poussineau C, Couston J, Alsarraf HMAB, Blaise M. Crystal structure of MAB_4123, a putative flavin-dependent monooxygenase from Mycobacterium abscessus. Acta Crystallogr F Struct Biol Commun 2023; 79:128-136. [PMID: 37132477 PMCID: PMC10167748 DOI: 10.1107/s2053230x2300345x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Numerous bacteria from different phylae can perform desulfurization reactions of organosulfur compounds. In these degradation or detoxification pathways, two-component flavin-dependent monooxygenases that use flavins (FMN or FAD) as a cofactor play important roles as they catalyse the first steps of these metabolic routes. The TdsC or DszC and MsuC proteins belong to this class of enzymes as they process dibenzothiophene (DBT) and methanesulfinate. Elucidation of their X-ray structures in apo, ligand-bound and cofactor-bound forms has provided important molecular insights into their catalytic reaction. Mycobacterial species have also been shown to possess a DBT degradation pathway, but no structural information is available on these two-component flavin-dependent monooxygenases. In this study, the crystal structure of the uncharacterized MAB_4123 protein from the human pathogen Mycobacterium abscessus is presented. The structure solved at high resolution displays high similarity to homologs from Rhodococcus, Paenibacillus and Pseudomonas species. In silico docking approaches suggest that MAB_4123 binds FMN and may use it as a cofactor. Structural analysis strongly suggests that MAB_4123 is a two-component flavin-dependent monooxygenase that could act as a detoxifying enzyme of organosulfur compounds in mycobacteria.
Collapse
Affiliation(s)
- Kien Lam Ung
- Institut de Recherche en Infectiologie de Montpellier, Centre Nationale de la Recherche Scientifique, 34293 Montpellier, France
| | - Chloé Poussineau
- Institut de Recherche en Infectiologie de Montpellier, Centre Nationale de la Recherche Scientifique, 34293 Montpellier, France
| | - Julie Couston
- Institut de Recherche en Infectiologie de Montpellier, Centre Nationale de la Recherche Scientifique, 34293 Montpellier, France
| | - Husam M. A. B. Alsarraf
- Institut de Recherche en Infectiologie de Montpellier, Centre Nationale de la Recherche Scientifique, 34293 Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier, Centre Nationale de la Recherche Scientifique, 34293 Montpellier, France
| |
Collapse
|
2
|
Peng C, Huang D, Shi Y, Zhang B, Sun L, Li M, Deng X, Wang W. Comparative transcriptomic analysis revealed the key pathways responsible for organic sulfur removal by thermophilic bacterium Geobacillus thermoglucosidasius W-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:639-650. [PMID: 31051369 DOI: 10.1016/j.scitotenv.2019.04.328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Biodesulfurization is a promising method to desulfurize sulfur-containing compounds in oil with its unique advantages, such as environment-friendly treatments and moderate reaction conditions. In this study, a thermophilic bacterium Geobacillus thermoglucosidasius W-2 was reported to show nearly 40% and 55% desulfurization rates on heavy oil with 2.81% and 0.46% initial total sulfur content, respectively. Subsequently, comparative transcriptome analysis indicated that several possible key desulfurization-related genes of this strain were found to be differentially up-regulated induced by benzothiophene and dibenzothiophene, respectively. These desulfurization-related genes were considered to conduct key step to convert organic sulfur to inorganic sulfur. Moreover, the characterization of thermophilic alkanesulfonate monooxygenase systems SsuD1/SsuE1 and SsuD2/SsuE2 revealed that the enzymes exhibit considerable thermal and pH stability and wide substrates applicability. These enzymes probably endowed the strain W-2 with the ability to desulfurize oil and eliminate the sulfur-containing surfactants. Thus, this study provides novel alkanesulfonate monooxygenase systems that have the application potential for heavy oil biodesulfurization, oil demulsification and other biocatalytic processes.
Collapse
Affiliation(s)
- Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yukun Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Chen X, Cui Y, Feng J, Wang Y, Liu X, Wu Q, Zhu D, Ma Y. Flavin Oxidoreductase‐Mediated Regeneration of Nicotinamide Adenine Dinucleotide with Dioxygen and Catalytic Amount of Flavin Mononucleotide for One‐Pot Multi‐Enzymatic Preparation of Ursodeoxycholic Acid. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yu Wang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| |
Collapse
|
4
|
Hino T, Hamamoto H, Suzuki H, Yagi H, Ohshiro T, Nagano S. Crystal structures of TdsC, a dibenzothiophene monooxygenase from the thermophile Paenibacillus sp. A11-2, reveal potential for expanding its substrate selectivity. J Biol Chem 2017; 292:15804-15813. [PMID: 28768765 DOI: 10.1074/jbc.m117.788513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/23/2017] [Indexed: 11/06/2022] Open
Abstract
Sulfur compounds in fossil fuels are a major source of environmental pollution, and microbial desulfurization has emerged as a promising technology for removing sulfur under mild conditions. The enzyme TdsC from the thermophile Paenibacillus sp. A11-2 is a two-component flavin-dependent monooxygenase that catalyzes the oxygenation of dibenzothiophene (DBT) to its sulfoxide (DBTO) and sulfone (DBTO2) during microbial desulfurization. The crystal structures of the apo and flavin mononucleotide (FMN)-bound forms of DszC, an ortholog of TdsC, were previously determined, although the structure of the ternary substrate-FMN-enzyme complex remains unknown. Herein, we report the crystal structures of the DBT-FMN-TdsC and DBTO-FMN-TdsC complexes. These ternary structures revealed many hydrophobic and hydrogen-bonding interactions with the substrate, and the position of the substrate could reasonably explain the two-step oxygenation of DBT by TdsC. We also determined the crystal structure of the indole-bound enzyme because TdsC, but not DszC, can also oxidize indole, and we observed that indole binding did not induce global conformational changes in TdsC with or without bound FMN. We also found that the two loop regions close to the FMN-binding site are disordered in apo-TdsC and become structured upon FMN binding. Alanine substitutions of Tyr-93 and His-388, which are located close to the substrate and FMN bound to TdsC, significantly decreased benzothiophene oxygenation activity, suggesting their involvement in supplying protons to the active site. Interestingly, these substitutions increased DBT oxygenation activity by TdsC, indicating that expanding the substrate-binding site can increase the oxygenation activity of TdsC on larger sulfur-containing substrates, a property that should prove useful for future microbial desulfurization applications.
Collapse
Affiliation(s)
- Tomoya Hino
- From the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8552, Japan
| | - Haruka Hamamoto
- From the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8552, Japan
| | - Hirokazu Suzuki
- From the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8552, Japan
| | - Hisashi Yagi
- From the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8552, Japan
| | - Takashi Ohshiro
- From the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8552, Japan
| | - Shingo Nagano
- From the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8552, Japan
| |
Collapse
|
5
|
Guan LJ, Lee WC, Wang S, Ohshiro T, Izumi Y, Ohtsuka J, Tanokura M. Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1. FEBS J 2015; 282:3126-35. [PMID: 25627402 DOI: 10.1111/febs.13216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED The release of SO2 from petroleum products derived from crude oil, which contains sulfur compounds such as dibenzothiophene (DBT), leads to air pollution. The '4S' metabolic pathway catalyzes the sequential conversion of DBT to 2-hydroxybiphenyl via three enzymes encoded by the dsz operon in several bacterial species. DszC (DBT monooxygenase), from Rhodococcus erythropolis D-1 is involved in the first two steps of the '4S' pathway. Here, we determined the first crystal structure of FMN-bound DszC, and found that two distinct conformations occur in the loop region (residues 131-142) adjacent to the active site. On the basis of the DszC-FMN structure and the previously reported apo structures of DszC homologs, the binding site for DBT and DBT sulfoxide is proposed. DATABASE The atomic coordinates and structure factors for apo-DszC (PDB code: 3X0X) and DszC-FMN (PDB code: 3X0Y) have been deposited in the Protein Data Bank (http://www.rcsb.org).
Collapse
Affiliation(s)
- Li-Jun Guan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Woo Cheol Lee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shipeng Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ohshiro
- Department of Biotechnology, Tottori University, Koyama-Minami, Tottori, Japan
| | - Yoshikazu Izumi
- Department of Biotechnology, Tottori University, Koyama-Minami, Tottori, Japan
| | - Jun Ohtsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Liu S, Zhang C, Su T, Wei T, Zhu D, Wang K, Huang Y, Dong Y, Yin K, Xu S, Xu P, Gu L. Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Proteins 2014; 82:1708-20. [PMID: 24470304 DOI: 10.1002/prot.24525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 11/07/2022]
Abstract
The dibenzothiophene (DBT) monooxygenase DszC, which is the key initiating enzyme in "4S" metabolic pathway, catalyzes sequential sulphoxidation reaction of DBT to DBT sulfoxide (DBTO), then DBT sulfone (DBTO2). Here, we report the crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Intriguingly, two distinct conformations occur in the flexible lid loops adjacent to the active site (residue 280-295, between α9 and α10). They are named "open"' and "closed" state respectively, and might show the status of the free and ligand-bound DszC. The molecular docking results suggest that the reduced FMN reacts with an oxygen molecule at C4a position of the isoalloxazine ring, producing the C4a-(hydro)peroxyflavin intermediate which is stabilized by H391 and S163. H391 may contribute to the formation of the C4a-(hydro)peroxyflavin by acting as a proton donor to the proximal peroxy oxygen, and it might also be involved in the protonation process of the C4a-(hydro)xyflavin. Site-directed mutagenesis study shows that mutations in the residues involved either in catalysis or in flavin or substrate-binding result in a complete loss of enzyme activity, suggesting that the accurate positions of flavin and substrate are crucial for the enzyme activity.
Collapse
Affiliation(s)
- Shiheng Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Genetic analysis of benzothiophene biodesulfurization pathway of Gordonia terrae strain C-6. PLoS One 2013; 8:e84386. [PMID: 24367657 PMCID: PMC3868597 DOI: 10.1371/journal.pone.0084386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/18/2013] [Indexed: 12/24/2022] Open
Abstract
Sulfur can be removed from benzothiophene (BT) by some bacteria without breaking carbon-carbon bonds. However, a clear mechanism for BT desulfurization and its genetic components have not been reported in literatures so far. In this study, we used comparative transcriptomics to study differential expression of genes in Gordonia terrae C-6 cultured with BT or sodium sulfate as the sole source of sulfur. We found that 135 genes were up-regulated with BT relative to sodium sulfate as the sole sulfur source. Many of these genes encode flavin-dependent monooxygenases, alkane sulfonate monooxygenases and desulfinase, which perform similar functions to those involved in the 4S pathway of dibenzothiophene (DBT) biodesulfurization. Three of the genes were found to be located in the same operon, designated bdsABC. Cell extracts of pET28a-bdsABC transfected E. coli Rosetta (DE3) converted BT to a phenolic compound, identified as o-hydroxystyrene. These results advance our understanding of enzymes involved in the BT biodesulfurization pathway.
Collapse
|
8
|
Lapalikar GV, Taylor MC, Warden AC, Onagi H, Hennessy JE, Mulder RJ, Scott C, Brown SE, Russell RJ, Easton CJ, Oakeshott JG. Cofactor promiscuity among F420-dependent reductases enables them to catalyse both oxidation and reduction of the same substrate. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20129a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|