1
|
Park T, Hoang HN, Kang JY, Park J, Mun SA, Jin M, Yang J, Jung CH, Eom SH. Structural and functional insights into the flexible β-hairpin of glycerol dehydrogenase. FEBS J 2023; 290:4342-4355. [PMID: 37165682 DOI: 10.1111/febs.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
During glycerol metabolism, the initial step of glycerol oxidation is catalysed by glycerol dehydrogenase (GDH), which converts glycerol to dihydroxyacetone in a NAD+ -dependent manner via an ordered Bi-Bi kinetic mechanism. Structural studies conducted with GDH from various species have mainly elucidated structural details of the active site and ligand binding. However, the structure of the full GDH complex with both cofactor and substrate bound is not determined, and thus, the structural basis of the kinetic mechanism of GDH remains unclear. Here, we report the crystal structures of Escherichia coli GDH with a substrate analogue bound in the absence or presence of NAD+ . Structural analyses including molecular dynamics simulations revealed that GDH possesses a flexible β-hairpin, and that during the ordered progression of the kinetic mechanism, the flexibility of the β-hairpin is reduced after NAD+ binding. It was also observed that this alterable flexibility of the β-hairpin contributes to the cofactor binding and possibly to the catalytic efficiency of GDH. These findings suggest the importance of the flexible β-hairpin to GDH enzymatic activity and shed new light on the kinetic mechanism of GDH.
Collapse
Affiliation(s)
- Taein Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Huyen Nga Hoang
- Department of Molecular Medicine, Chonnam National University, Gwangju, Korea
- Hanoi Medical University, Hanoi, Vietnam
| | - Jung Youn Kang
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea
| | - Jongseo Park
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea
| | - Sang A Mun
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea
| | - Minwoo Jin
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea
| | - Jihyeong Yang
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea
| | - Che-Hun Jung
- Department of Molecular Medicine, Chonnam National University, Gwangju, Korea
- Department of Chemistry, Chonnam National University, Gwangju, Korea
| | - Soo Hyun Eom
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Korea
| |
Collapse
|
2
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
3
|
Del Arco J, Cejudo-Sanches J, Esteban I, Clemente-Suárez VJ, Hormigo D, Perona A, Fernández-Lucas J. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem 2017; 237:605-611. [PMID: 28764042 DOI: 10.1016/j.foodchem.2017.05.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022]
Abstract
Traditionally, enzymatic synthesis of nucleoside-5'-monophosphates (5'-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to increase solubilisation of these bases by employing high temperatures or alkaline pH. This study describes the cloning, expression and purification of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus thermophilus (TtHGXPRT). Biochemical characterization indicates TtHGXPRT as a homotetramer with excellent activity and stability across a broad range of temperatures (50-90°C) and ionic strengths (0-500mMNaCl), but it also reveals an unusually high activity and stability under alkaline conditions (pH range 8-11). In order to explore the potential of TtHGXPRT as an industrial biocatalyst, enzymatic production of several dietary 5'-NMPs, such as 5'-GMP and 5'-IMP, was carried out at high concentrations of guanine and hypoxanthine.
Collapse
Affiliation(s)
- J Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - J Cejudo-Sanches
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - I Esteban
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - V J Clemente-Suárez
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - D Hormigo
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - A Perona
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - J Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Desarrollo Agroindustrial Sostenible, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Colombia.
| |
Collapse
|
4
|
Li F, Liang J, Wang W, Zhou X, Deng Z, Wang Z. Analysis of Streptomyces coelicolor membrane proteome using two-dimensional native/native and native/sodium dodecyl sulfate gel electrophoresis. Anal Biochem 2014; 465:148-55. [DOI: 10.1016/j.ab.2014.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
5
|
Zorin VV, Petukhova NI, Shakhmaev RN. Promising directions for utilization of glycerol-containing waste from biodiesel fuel production. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212050362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Rocha-Martín J, Vega D, Bolivar JM, Hidalgo A, Berenguer J, Guisán JM, López-Gallego F. Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. BIORESOURCE TECHNOLOGY 2012; 103:343-350. [PMID: 22055107 DOI: 10.1016/j.biortech.2011.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
The use of dehydrogenases in asymmetric chemistry has exponentially grown in the last decades facilitated by the genome mining. Here, a new short-chain alcohol dehydrogenase from Thermus thermophilus HB27 has been expressed, purified, characterized and stabilized by immobilization on solid supports. The enzyme catalyzes both oxidative and reductive reactions at neutral pH with a broad range of substrates. Its highest activity was found towards the reduction of 2,2',2″-trifluoroacetophenone (85 U/mg at 65 °C and pH 7). Moreover, the enzyme was stabilized more than 200-fold by multipoint covalent immobilization on agarose matrixes via glyoxyl chemistry. Such heterogeneous catalyst coupled to an immobilized cofactor recycling partner performed the quantitative asymmetric reduction of 2,2',2″-trifluoroacetophenone and rac-2-phenylpropanal to (S)-(+)-α-(trifluoromethyl)benzyl alcohol and (R)-2-phenyl-1-propanol with enantiomeric excesses of 96% and 71%, respectively. To our knowledge this is the first alcohol dehydrogenase from a thermophilic source with anti-Prelog selectivity for aryl ketones and that preferentially produces R-profens.
Collapse
Affiliation(s)
- Javier Rocha-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|