1
|
A Conceptual Review on Using Consequential Life Cycle Assessment Methodology for the Energy Sector. ENERGIES 2020. [DOI: 10.3390/en13123076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Energy is engaged in the supply chain of many economic sectors; therefore, the environmental impacts of the energy sector are indirectly linked to those of other sectors. Consequential life cycle assessment (CLCA) is an appropriate methodology to examine the direct and indirect environmental impacts of a product due to technological, economic or social changes. To date, different methodological approaches are proposed, combining economic and environmental models. This paper reviews the basic concept of CLCA and the coupling of economic and environmental models for performing CLCA in the energy sector during the period 2006–2020, with the aim to provide a description of the different tools, highlighting their strengths and limitations. From the review, it emerges that economic modelling tools are frequently used in combination with environmental data for CLCA in the energy sector, including equilibrium, input-output, and dynamic models. Out of these, the equilibrium model is the most widely used, showing some strengths in availability of data and energy system modelling tools. The input-output model allows for describing both direct and indirect effects due to changes in the energy sector, by using publicly available data. The dynamic model is less frequently applied due to its limitation in availability of data and modelling tools, but has recently attracted more attention due to the ability in modelling quantitative and qualitative indicators of sustainability.
Collapse
|
2
|
Nayak AK, Rahman MM, Naidu R, Dhal B, Swain CK, Nayak AD, Tripathi R, Shahid M, Islam MR, Pathak H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:890-912. [PMID: 30790762 DOI: 10.1016/j.scitotenv.2019.02.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
This review covers the current and emerging analytical methods used in laboratory, field, landscape and regional contexts for measuring soil organic carbon (SOC) sequestration in agricultural soil. Soil depth plays an important role in estimating SOC sequestration. Selecting appropriate sampling design, depth of soil, use of proper analytical methods and base line selection are prerequisites for estimating accurately the soil carbon stocks. Traditional methods of wet digestion and dry combustion (DC) are extensively used for routine laboratory analysis; the latter is considered to be the "gold standard" and superior to the former for routine laboratory analysis. Recent spectroscopic techniques can measure SOC stocks in laboratory and in-situ even up to a deeper depth. Aerial spectroscopy using multispectral and/or hyperspectral sensors located on aircraft, unmanned aerial vehicles (UAVs) or satellite platforms can measure surface soil organic carbon. Although these techniques' current precision is low, the next generation hyperspectral sensor with improved signal noise ratio will further improve the accuracy of prediction. At the ecosystem level, carbon balance can be estimated directly using the eddy-covariance approach and indirectly by employing agricultural life cycle analysis (LCA). These methods have tremendous potential for estimating SOC. Irrespective of old or new approaches, depending on the resources and research needed, they occupy a unique place in soil carbon and climate research. This paper highlights the overview, potential limitations of various scale-dependent techniques for measuring SOC sequestration in agricultural soil.
Collapse
Affiliation(s)
- A K Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - B Dhal
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - C K Swain
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - A D Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - R Tripathi
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Mohammad Shahid
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Mohammad Rafiqul Islam
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - H Pathak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| |
Collapse
|
3
|
Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, Miandad R, Khan MZ, Syamsiro M, Ismail IMI, Pant D. Waste biorefineries: Enabling circular economies in developing countries. BIORESOURCE TECHNOLOGY 2017; 241:1101-1117. [PMID: 28579178 DOI: 10.1016/j.biortech.2017.05.097] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 05/25/2023]
Abstract
This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies.
Collapse
Affiliation(s)
- A S Nizami
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - M Rehan
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Waqas
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Naqvi
- Future Energy Center, Department of Energy, Building and Environment, Mälardalen University, Sweden
| | - O K M Ouda
- Department of Civil Engineering, Prince Mohamed Bin Fahd University, Al Khobar, Saudi Arabia
| | - K Shahzad
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - R Miandad
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Z Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - M Syamsiro
- Department of Mechanical Engineering, Janabadra University, Yogyakarta, Indonesia
| | - I M I Ismail
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
4
|
Conducting an agricultural life cycle assessment: challenges and perspectives. ScientificWorldJournal 2013; 2013:472431. [PMID: 24391463 PMCID: PMC3874300 DOI: 10.1155/2013/472431] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/03/2013] [Indexed: 11/17/2022] Open
Abstract
Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture.
Collapse
|