1
|
Lojananan N, Cheirsilp B, Intasit R, Billateh A, Srinuanpan S, Suyotha W, Boonsawang P. Successive process for efficient biovalorization of Brewers' spent grain to lignocellulolytic enzymes and lactic acid production through simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2024; 397:130490. [PMID: 38403168 DOI: 10.1016/j.biortech.2024.130490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
This study aimed to increase the value of brewers' spent grain (BSG) by using it as feedstock to produce lignocellulolytic enzymes and lactic acid (LA). Twenty-two fungal strains were screened for lignocellulolytic enzyme production from BSG. Among them, Trichoderma sp. showed the highest cellulase activity (35.84 ± 0.27 U/g-BSG) and considerably high activities of xylanase (599.61 ± 23.09 U/g-BSG) and β-glucosidase (16.97 ± 0.77 U/g-BSG) under successive solid-state and submerged fermentation. The processes were successfully scaled up in a bioreactor. The enzyme cocktail was recovered and characterized. The maximum cellulase and xylanase activities were found at pH 5.0 and 50 °C, and the activities were highly stable at pH 4-8 and 30-50 °C. The enzyme cocktail was applied in simultaneous saccharification and fermentation of acid-pretreated BSG for LA production. The maximum LA obtained was 59.3 ± 1.0 g/L. This study has shown the efficient biovalorization of BSG, and this approach may also be applicable to other agro-industrial wastes.
Collapse
Affiliation(s)
- Nattha Lojananan
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Rawitsara Intasit
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Asma Billateh
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Suyotha
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyarat Boonsawang
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Rojas-Pérez LC, Narváez-Rincón PC, Rocha MAM, Coelho E, Coimbra MA. Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers' spent grain. BIORESOUR BIOPROCESS 2022; 9:105. [PMID: 38647754 PMCID: PMC10992567 DOI: 10.1186/s40643-022-00594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Xylose is an abundant bioresource for obtaining diverse chemicals and added-value products. The production of xylose from green alternatives like enzymatic hydrolysis is an important step in a biorefinery context. This research evaluated the synergism among four classes of hydrolytic purified enzymes-endo-1,4-β-xylanase, α-L-arabinofuranosidase, β-xylosidase, and α-D-glucuronidase-over hydrolysis of glucuronoarabinoxylan (GAX) obtained from brewers' spent grain (BSG) after alkaline extraction and ethanol precipitation. First, monosaccharides, uronic acids and glycosidic-linkages of alkaline extracted GAX fraction from BSG were characterized, after that different strategies based on the addition of one or two families of enzymes-endo-1,4-β-xylanase (GH10 and GH11) and α-L-arabinofuranosidase (GH43 and GH51)-cooperating with one β-xylosidase (GH43) and one α-D-glucuronidase (GH67) into enzymatic hydrolysis were assessed to obtain the best yield of xylose. The xylose release was monitored over time in the first 90 min and after a prolonged reaction up to 48 h of reaction. The highest yield of xylose was 63.6% (48 h, 40 ℃, pH 5.5), using a mixture of all enzymes devoid of α-L-arabinofuranosidase (GH43) family. These results highlight the importance of GH51 arabinofuranosidase debranching enzyme to allow a higher cleavage of the xylan backbone of GAX from BSG and their synergy with 2 endo-1,4-β-xylanase (GH10 and GH11), one β-xylosidase (GH43) and the inclusion of one α-D-glucuronidase (GH67) in the reaction system. Therefore, this study provides an environmentally friendly process to produce xylose from BSG through utilization of enzymes as catalysts.
Collapse
Affiliation(s)
- Lilia C Rojas-Pérez
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad Ean, 110221, Bogotá D.C., Colombia.
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia.
| | - Paulo C Narváez-Rincón
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - M Angélica M Rocha
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Elisabete Coelho
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Manuel A Coimbra
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Akermann A, Weiermüller J, Christmann J, Guirande L, Glaser G, Knaus A, Ulber R. Brewers' spent grain liquor as a feedstock for lactate production with Lactobacillus delbrueckii subsp. lactis. Eng Life Sci 2020; 20:168-180. [PMID: 32874180 PMCID: PMC7447884 DOI: 10.1002/elsc.201900143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
Brewers' spent grain (BSG) is a low-cost by-product of the brewing process. BSG liquor names the liquid components of BSG, mainly glucose, maltose, and long-chain α-1,4-glycosidic bond glucose oligomers. These substances should be separated in existing BSG biorefineries, as they might lead to an increased formation of microbe-inhibiting compounds in well-established hydrothermal/enzymatic saccharification processes. In most cases, this liquid fraction is discarded. The present study presents for the first time an optimized process with BSG liquor for the purpose of producing bulk chemicals (e.g., lactate) in relevant concentrations. The process comprises the application of yeast extract, produced from own brewing processes, as the sole supplemented complex constituent in a simultaneous fermentation and saccharification process. Kinetic parameters for the final optimized process conditions with the organism Lactobacillus delbrueckii subsp. lactis were: maximum specific growth rate µmax = 0.47 h-1, maximum lactate concentration cLac, max = 79.06 g L-1, process yield YPS = 0.89 gLac gSugar -1, lactate production rate qP = 4.18 gLac gCDW -1 h-1, and productivity P 15 h = 4.93 gLac L-1 h-1. BSG liquor, linked with yeast extract from Brewers' yeast, can be a promising substrate for further bioprocess engineering tasks and contribute to a holistic and sustainable usage of Brewers' spent grain.
Collapse
Affiliation(s)
- Alexander Akermann
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Jens Weiermüller
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Jens Christmann
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Léa Guirande
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Gregor Glaser
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Annette Knaus
- TU Kaiserslautern, Department of Civil EngineeringResource Efficient Wastewater TechnologyKaiserslauternGermany
| | - Roland Ulber
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| |
Collapse
|
4
|
Wen C, Zhang J, Duan Y, Zhang H, Ma H. A Mini‐Review on Brewer's Spent Grain Protein: Isolation, Physicochemical Properties, Application of Protein, and Functional Properties of Hydrolysates. J Food Sci 2019; 84:3330-3340. [DOI: 10.1111/1750-3841.14906] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Chaoting Wen
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
| | - Jixian Zhang
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
| | - Yuqing Duan
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
- Inst. of Food Physical ProcessingJiangsu Univ. Zhenjiang 212013 China
| | - Haihui Zhang
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
| | - Haile Ma
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
- Inst. of Food Physical ProcessingJiangsu Univ. Zhenjiang 212013 China
| |
Collapse
|
5
|
Singh G, Patel AK, Gupta A, Gupta D, Mishra VK. Current Advancements in Recombinant Technology for Industrial Production of Cellulases: Part-II. Fungal Biol 2019. [DOI: 10.1007/978-3-030-14726-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Xiros C, Studer MH. A Multispecies Fungal Biofilm Approach to Enhance the Celluloyltic Efficiency of Membrane Reactors for Consolidated Bioprocessing of Plant Biomass. Front Microbiol 2017; 8:1930. [PMID: 29067006 PMCID: PMC5641325 DOI: 10.3389/fmicb.2017.01930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023] Open
Abstract
The constraints and advantages in cellulolytic enzymes production by fungal biofilms for a consolidated bioconversion process were investigated during this study. The biofilm cultivations were carried out in reactors designed for consolidated bioprocessing Multispecies Biofilm Membrane reactors, (MBM) where an aerobic fungal biofilm produces the lignocellulolytic enzymes while a fermenting microorganism forms the fermentation product at anaerobic conditions. It was shown that although mycelial growth was limited in the MBM reactors compared to submerged cultivations, the secretion of cellulolytic enzymes per cell dry weight was higher. When Trichoderma reesei was used as the sole enzyme producer, cellobiose accumulated in the liquid medium as the result of the deficiency of β-glucosidase in the fungal secretome. To enhance β-glucosidase activity, T. reesei was co-cultivated with A. phoenicis which is a β-glucosidase overproducer. The two fungi formed a multispecies biofilm which produced a balanced cellulolytic cocktail for the saccharification of plant biomass. The mixed biofilm reached a 2.5 fold increase in β-glucosidase production, compared to the single T. reesei biofilm. The enzymatic systems of single and mixed biofilms were evaluated regarding their efficiency on cellulosic substrates degradation. Washed solids from steam pretreated beechwood, as well as microcrystalline cellulose were used as the substrates. The enzymatic system of the multispecies biofilm released four times more glucose than the enzymatic system of T. reesei alone from both substrates and hydrolyzed 78 and 60% of the cellulose content of washed solids from beechwood and microcrystalline cellulose, respectively.
Collapse
Affiliation(s)
- Charilaos Xiros
- Laboratory for Bioenergy and Biochemicals, School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Bern, Switzerland
| | - Michael H Studer
- Laboratory for Bioenergy and Biochemicals, School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Bern, Switzerland
| |
Collapse
|
7
|
Fusarium species—a promising tool box for industrial biotechnology. Appl Microbiol Biotechnol 2017; 101:3493-3511. [DOI: 10.1007/s00253-017-8255-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
|
8
|
Lynch KM, Steffen EJ, Arendt EK. Brewers' spent grain: a review with an emphasis on food and health. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.363] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional Sciences; University College Cork; College Road Cork Ireland
| | - Eric J. Steffen
- School of Food and Nutritional Sciences; University College Cork; College Road Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences; University College Cork; College Road Cork Ireland
| |
Collapse
|
9
|
Kemppainen K, Rommi K, Holopainen U, Kruus K. Steam explosion of Brewer’s spent grain improves enzymatic digestibility of carbohydrates and affects solubility and stability of proteins. Appl Biochem Biotechnol 2016; 180:94-108. [DOI: 10.1007/s12010-016-2085-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
|
10
|
Kwon JH, Kang H, Sang BI, Kim Y, Min J, Mitchell RJ, Lee JH. Feasibility of a facile butanol bioproduction using planetary mill pretreatment. BIORESOURCE TECHNOLOGY 2016; 199:283-287. [PMID: 26372608 DOI: 10.1016/j.biortech.2015.08.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
A facile butanol bioproduction process was developed using planetary milling, and Pinus rigida wood waste as a model substrate for fermentable sugars. The use of planetary milling as the pretreatment eliminates the need for washing and transfer of the biomass prior to enzymatic hydrolysis. Moreover, using this pretreatment process resulted in the production of only 0.072 ± 0.003 g/L soluble phenolic compounds, a concentration that was not inhibitory towards Clostridium beijerinckii NCIMB 8052. As the milling was performed in a compatible buffer (50mM acetate, pH 4.8), the enzymatic hydrolysis step was initiated by simply adding the cellulase cocktail powder directly to pretreated biomass without washing the biomass or exchanging the buffer, resulting in a glucose yield of 31 g/L (84.02%). Fermentation of the hydrolysate samples by C. beijerinckii NCIMB 8052 gave slightly better butanol yields than cultures grown in a typical lab media (P2), with final concentrations of 6.91 and 6.66 g/L, respectively.
Collapse
Affiliation(s)
- Jeong Heo Kwon
- Korea Institute of Ceramic Engineering and Technology (KICET), 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea; Division of Chemical Engineering & Bio Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyunsoo Kang
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byoung-In Sang
- Division of Chemical Engineering & Bio Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yunje Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jiho Min
- Division of Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Robert J Mitchell
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jin Hyung Lee
- Korea Institute of Ceramic Engineering and Technology (KICET), 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea.
| |
Collapse
|
11
|
Anasontzis GE, Christakopoulos P. Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered 2014; 5:393-5. [PMID: 25424444 PMCID: PMC4601276 DOI: 10.4161/bioe.36328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fusarium oxysporum has been reported as being able to both produce the enzymes necessary to degrade lignocellulosic biomass to sugars and also ferment the monosaccharides to ethanol under anaerobic or microaerobic conditions. However, in order to become an economically feasible alternative to other ethanol-producing microorganisms, a better understanding of its physiology, metabolic pathways, and bottlenecks is required, together with an improvement in its efficiency and robustness. In this report, we describe the challenges for the future and give additional justification for our recent publication.
Collapse
Affiliation(s)
- George E Anasontzis
- a Industrial Biotechnology; Chemical and Biological Engineering ; Chalmers University of Technology ; Gothenburg , Sweden
| | | |
Collapse
|
12
|
Peña L, Hohn KL, Li J, Sun XS, Wang D. Synthesis of Propyl-Sulfonic Acid-Functionalized Nanoparticles as Catalysts for Cellobiose Hydrolysis. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbnb.2014.54028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Koppram R, Tomás-Pejó E, Xiros C, Olsson L. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 2014; 32:46-53. [DOI: 10.1016/j.tibtech.2013.10.003] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
|
14
|
Li B, Wang W, Zong Y, Qin G, Tian S. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 2012; 11:4249-60. [PMID: 22746291 DOI: 10.1021/pr300365f] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Botrytis cinerea causes gray mold rot on over 200 plant species worldwide, resulting in great economic loss every year. Cooperation of proteins secreted by B. cinerea plays an important role in its successful infection to host plants. The ambient pH, as one of the most important environmental parameters, can regulate expression of secreted proteins in various fungal pathogens. In the present study, we mainly investigated the effect of ambient pH on secretome of B. cinerea strain B05.10 with a comparative proteomic method based on 2-DE. Distinct differences in secretome of B. cinerea were found between pH 4 and 6 treatments, and 47 differential spots, corresponding to 21 unique proteins, were identified using MALDI-TOF/TOF. At pH 4, more proteins related to proteolysis were induced, whereas most of up-accumulated proteins were cell wall degrading enzymes at pH 6. Analysis of gene expression using quantitative real-time PCR suggests that production of most of these proteins was regulated at the level of transcription. These findings indicate that B. cinerea can adjust protein profile of secretome responding to different ambient pH values and provide evidence to deeply understand the complicated infecting mechanisms of B. cinerea on a wide range of plant hosts.
Collapse
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | |
Collapse
|
15
|
Won KY, Kim YS, Oh KK. Comparison of bioethanol production of simultaneous saccharification & fermentation and separation hydrolysis & fermentation from cellulose-rich barley straw. KOREAN J CHEM ENG 2012. [DOI: 10.1007/s11814-012-0019-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|