1
|
Byun S, Park HJ, Joo JC, Kim YH. Enzymatic Synthesis of D-pipecolic Acid by Engineering the Substrate Specificity of Trypanosoma cruzi Proline Racemase and Its Molecular Docking Study. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0367-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Liu Z, Liu Y, Zeng G, Shao B, Chen M, Li Z, Jiang Y, Liu Y, Zhang Y, Zhong H. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. CHEMOSPHERE 2018; 203:139-150. [PMID: 29614407 DOI: 10.1016/j.chemosphere.2018.03.179] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 05/02/2023]
Affiliation(s)
- Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yujie Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhigang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yilin Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yu Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, PR China
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, PR China
| |
Collapse
|
3
|
|
4
|
Yeon YJ, Park HY, Yoo YJ. Engineering substrate specificity of succinic semialdehyde reductase (AKR7A5) for efficient conversion of levulinic acid to 4-hydroxyvaleric acid. J Biotechnol 2015; 210:38-43. [DOI: 10.1016/j.jbiotec.2015.06.404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/13/2015] [Accepted: 06/19/2015] [Indexed: 01/18/2023]
|
5
|
Duan H, Zheng K, Cui YC, Li YD, Zhang L. Effect of tetrabutylammonium bromide on enzymatic polymerization of phenol catalyzed by horseradish peroxidase. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1473-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Bello M, Mendieta-Wejebe JE, Correa-Basurto J. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity. Biochem Pharmacol 2014; 90:145-58. [PMID: 24794636 DOI: 10.1016/j.bcp.2014.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/17/2022]
Abstract
Docking and molecular dynamics (MD) simulation have been two computational techniques used to gain insight about the substrate orientation within protein active sites, allowing to identify potential residues involved in the binding and catalytic mechanisms. In this study, both methods were combined to predict the regioselectivity in the binding mode of valproic acid (VPA) on three cytochrome P-450 (CYP) isoforms CYP2C9, CYP2C11, and CYP2E1, which are involved in the biotransformation of VPA yielding reactive hepatotoxic intermediate 2-n-propyl-4-pentenoic acid (4nVPA). There are experimental data about hydrogen atom abstraction of the C4-position of VPA to yield 4nVPA, however, there are not structural evidence about the binding mode of VPA and 4nVPA on CYPs. Therefore, the complexes between these CYP isoforms and VPA or 4nVPA were studied to explore their differences in binding and energetic stabilization. Docking results showed that VPA and 4nVPA are coupled into CYPs binding site in a similar conformation, but it does not explain the VPA hydrogen atom abstraction. On the other hand, MD simulations showed a set of energetic states that reorient VPA at the first ns, then making it susceptible to a dehydrogenation reaction. For 4nVPA, multiple binding modes were observed in which the different states could favor either undergo other reaction mechanism or ligand expulsion from the binding site. Otherwise, the energetic and entropic contribution point out a similar behavior for the three CYP complexes, showing as expected a more energetically favorable binding free energy for the complexes between CYPs and VPA than with 4nVPA.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México, Distrito Federal 11340, Mexico.
| | - Jessica E Mendieta-Wejebe
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México, Distrito Federal 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México, Distrito Federal 11340, Mexico.
| |
Collapse
|
7
|
Moon SJ, Kwon M, Choi D, Won K, Kim YH, Choi IG, Choi JW. In vitro analysis of the monolignol coupling mechanism using dehydrogenative polymerization in the presence of peroxidases and controlled feeding ratios of coniferyl and sinapyl alcohol. PHYTOCHEMISTRY 2012; 82:15-21. [PMID: 22884779 DOI: 10.1016/j.phytochem.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 04/03/2012] [Accepted: 07/10/2012] [Indexed: 05/27/2023]
Abstract
In this study, dehydrogenative polymers (DHP) were synthesized in vitro through dehydrogenative polymerization using different ratios of coniferyl alcohol (CA) and sinapyl alcohol (SA) (10:0, 8:2, 6:4, 2:8, 0:10), in order to investigate the monolignol coupling mechanism in the presence of horseradish peroxidase (HRP), Coprinus cinereus peroxidase (CiP) or soybean peroxidase (SBP) with H(2)O(2), respectively. The turnover capacities of HRP, CiP and SBP were also measured for coniferyl alcohol (CA) and sinapyl alcohol (SA), and CiP and SBP were found to have the highest turnover capacity for CA and SA, respectively. The yields of HRP-catalyzed DHP (DHP-H) and CiP-catalyzed DHP (DHP-C) were estimated between ca. 7% and 72% based on the original weights of CA/SA in these synthetic conditions. However, a much lower yield of SBP-catalyzed DHP (DHP-S) was produced compared to that of DHP-H and DHP-C. In general, the DHP yields gradually increased as the ratio of CA/SA increased. The average molecular weight of DHP-H also increased with increasing CA/SA ratios, while those of DHP-C and DHP-S were not influenced by the ratios of monolignols. The frequency of β-O-4 linkages in the DHPs decreased with increasing CA/SA ratios, indicating that the formation of β-O-4 linkages during DHP synthesis was influenced by peroxidase type.
Collapse
Affiliation(s)
- Sun-Joo Moon
- Department of Forest Sciences and Research Institute for Agriculture and Life Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Córdoba A, Magario I, Ferreira ML. Experimental design and MM2–PM6 molecular modelling of hematin as a peroxidase-like catalyst in Alizarin Red S degradation. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcata.2011.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Chen M, Zeng G, Tan Z, Jiang M, Li H, Liu L, Zhu Y, Yu Z, Wei Z, Liu Y, Xie G. Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile. PLoS One 2011; 6:e25647. [PMID: 21980516 PMCID: PMC3183068 DOI: 10.1371/journal.pone.0025647] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/07/2011] [Indexed: 11/25/2022] Open
Abstract
Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
- * E-mail:
| | - Zhongyang Tan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Min Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Hui Li
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Lifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Yi Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Zhen Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Yuanyuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Gengxin Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| |
Collapse
|