1
|
Sumathi Y, Dong CD, Singhania RR, Chen CW, Gurunathan B, Patel AK. Advancements in Nano-Enhanced microalgae bioprocessing. BIORESOURCE TECHNOLOGY 2024; 401:130749. [PMID: 38679239 DOI: 10.1016/j.biortech.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
Collapse
Affiliation(s)
- Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
2
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
Yang X, Wang S, Pi K, Ge H, Zhang S, Gerson AR. Coagulation as an effective method for cyanobacterial bloom control: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11002. [PMID: 38403998 DOI: 10.1002/wer.11002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Eutrophication, the over-enrichment with nutrients, for example, nitrogen and phosphorus, of ponds, reservoirs and lakes, is an urgent water quality issue. The most notorious symptom of eutrophication is a massive proliferation of cyanobacteria, which cause aquatic organism death, impair ecosystem and harm human health. The method considered to be most effective to counteract eutrophication is to reduce external nutrient inputs. However, merely controlling external nutrient load is insufficient to mitigate eutrophication. Consequently, a rapid diminishing of cyanobacterial blooms is relied on in-lake intervention, which may encompass a great variety of different approaches. Coagulation/flocculation is the most used and important water purification unit. Since cyanobacterial cells generally carry negative charges, coagulants are added to water to neutralize the negative charges on the surface of cyanobacteria, causing them to destabilize and precipitate. Most of cyanobacteria and their metabolites can be removed simultaneously. However, when cyanobacterial density is high, sticky secretions distribute outside cells because of the small size of cyanobacteria. The sticky secretions are easily to form complex colloids with coagulants, making it difficult for cyanobacteria to destabilize and resulting in unsatisfactory treatment effects of coagulation on cyanobacteria. Therefore, various coagulants and coagulation methods were developed. In this paper, the focus is on the coagulation of cyanobacteria as a promising tool to manage eutrophication. Basic principles, applications, pros and cons of chemical, physical and biological coagulation are reviewed. In addition, the application of coagulation in water treatment is discussed. It is the aim of this review article to provide a significant reference for large-scale governance of cyanobacterial blooms. PRACTITIONER POINTS: Flocculation was a promising tool for controlling cyanobacteria blooms. Basic principles of four kinds of flocculation methods were elucidated. Flocculant was important in the flocculation process.
Collapse
Affiliation(s)
- Xian Yang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Shulian Wang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Kewu Pi
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
- National Engineering Research Center of Advanced Technology and Equipment for Water Environment Pollution Monitoring, Hubei University of Technology, Wuhan, China
| | - Hongmei Ge
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Shuo Zhang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania, Australia
| |
Collapse
|
4
|
Cao Y, Sathish CI, Guan X, Wang S, Palanisami T, Vinu A, Yi J. Advances in magnetic materials for microplastic separation and degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132537. [PMID: 37716264 DOI: 10.1016/j.jhazmat.2023.132537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The widespread use of plastics in modern human society has led to severe environmental pollution with microplastics (MP/MPs). The rising consumption of plastics raises the omnipresence of microplastics in aquatic environments, which carry toxic organic matter, transport toxic chemicals, and spread through the food chain, seriously threatening marine life and human health. In this context, several advanced strategies for separating and degrading MPs from water have been developed recently, and magnetic materials and their nanostructures have emerged as promising materials for targeting, adsorbing, transporting, and degrading MPs. However, a comprehensive review of MP remediation using magnetic materials and their nanostructures is currently lacking. The present work provides a critical review of the recent advances in MP removal/degradation using magnetic materials. The focus is on the comparison and analysis of the MP's removal efficiencies of different magnetic materials, including iron/ferrite nanoparticles, magnetic nanocomposites, and micromotors, aiming to unravel the underlying roles of magnetic materials in different types of MP degradation and present the general strategies for designing them with optimal performance. Finally, the review outlines the forthcoming challenges and perspectives in the development of magnetic nanomaterials for MP remediation.
Collapse
Affiliation(s)
- Yitong Cao
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, NSW, Australia
| | - C I Sathish
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Thava Palanisami
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Ajayan Vinu
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, NSW, Australia.
| |
Collapse
|
5
|
Kendir S, Franzreb M. Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae. BIORESOURCE TECHNOLOGY 2024; 391:129964. [PMID: 37926356 DOI: 10.1016/j.biortech.2023.129964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Energy- and time-consuming concentration steps currently limit the industrial application of microalgae. Compared to state-of-the-art technologies, magnetic separation shows a high potential for efficient harvesting of microalgae. This study presents a novel approach to combine pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles for magnetic separation of the freshwater microalgae Chlorella vulgaris. Harvesting efficiencies up to 98% were achieved at moderate pH and low particle and calcium phosphate concentrations in a model medium. However, cultivation-dependent high loads of algogenic organic matter can severely inhibit flocculation and particle/algae interactions, requiring higher salt concentrations or pH. Harvesting efficiencies above 90% were still attainable at moderate pH with increased calcium phosphate concentrations of 10mM. Acidification of the suspension to pH 5 allows for simple and reversible particle recycling. The presented process provides a promising path to universal and cost-effective harvesting, advancing the utilization of microalgae as a sustainable bioresource.
Collapse
Affiliation(s)
- Sefkan Kendir
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
Tan KY, Low SS, Manickam S, Ma Z, Banat F, Munawaroh HSH, Show PL. Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Res Int 2023; 169:112870. [PMID: 37254319 DOI: 10.1016/j.foodres.2023.112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Nutraceutical supplements provide health benefits, such as fulfilling the lack of nutrients in the human body or being utilized to treat or cure certain diseases. As the world population is growing, certain countries are experiencing food crisis challenges, causing natural foods are not sustainable to be used for nutraceutical production because it will require large-scale of food supply to produce enriched nutraceutics. The high demand for abundant nutritional compounds has made microalgae a reliable source as they can synthesize high-value molecules through photosynthetic activities. However, some microalgae species are limited in growth and unable to accumulate a significant amount of biomass due to several factors related to environmental conditions. Therefore, adding nanoparticles (NPs) as a photocatalyst is considered to enhance the yield rate of microalgae in an energy-saving and economical way. This review focuses on the composition of microalgal biomass for nutraceutical production, the health perspectives of nutritional compounds on humans, and the application of nanotechnology on microalgae for improved production and harvesting. The results obtained show that microalgal-based compounds indeed have better nutrients content than natural foods. However, nanotechnology must be further comprehended to make them non-hazardous and sustainable.
Collapse
Affiliation(s)
- Kai Yao Tan
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100 China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou 325035, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi, 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
7
|
Niksefat M, Rahimi J, Maleki A, Nia AS. N-rich porous triazine based organic polymer composed with magnetic for high-efficiency removal of blue-green microalgae from wastewater. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Liu L, Lu S, An G, Yang B, Zhao X, Wu D, He H, Wang D. Historical development of Al30 highlighting the unique characteristics and application in water treatment: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Ren B, Weitzel KA, Duan X, Nadagouda MN, Dionysiou DD. A comprehensive review on algae removal and control by coagulation-based processes: mechanism, material, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Gerulová K, Kucmanová A, Sanny Z, Garaiová Z, Seiler E, Čaplovičová M, Čaplovič Ľ, Palcut M. Fe 3O 4-PEI Nanocomposites for Magnetic Harvesting of Chlorella vulgaris, Chlorella ellipsoidea, Microcystis aeruginosa, and Auxenochlorella protothecoides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1786. [PMID: 35683642 PMCID: PMC9182367 DOI: 10.3390/nano12111786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
Magnetic separation of microalgae using magnetite is a promising harvesting method as it is fast, reliable, low cost, energy-efficient, and environmentally friendly. In the present work, magnetic harvesting of three green algae (Chlorella vulgaris, Chlorella ellipsoidea, and Auxenochlorella protothecoides) and one cyanobacteria (Microcystis aeruginosa) has been studied. The biomass was flushed with clean air using a 0.22 μm filter and fed CO2 for accelerated growth and faster reach of the exponential growth phase. The microalgae were harvested with magnetite nanoparticles. The nanoparticles were prepared by controlled co-precipitation of Fe2+ and Fe3+ cations in ammonia at room temperature. Subsequently, the prepared Fe3O4 nanoparticles were coated with polyethyleneimine (PEI). The prepared materials were characterized by high-resolution transmission electron microscopy, X-ray diffraction, magnetometry, and zeta potential measurements. The prepared nanomaterials were used for magnetic harvesting of microalgae. The highest harvesting efficiencies were found for PEI-coated Fe3O4. The efficiency was pH-dependent. Higher harvesting efficiencies, up to 99%, were obtained in acidic solutions. The results show that magnetic harvesting can be significantly enhanced by PEI coating, as it increases the positive electrical charge of the nanoparticles. Most importantly, the flocculants can be prepared at room temperature, thereby reducing the production costs.
Collapse
Affiliation(s)
- Kristína Gerulová
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Alexandra Kucmanová
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Zuzana Sanny
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Zuzana Garaiová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina F1, 842 48 Bratislava, Slovakia;
| | - Eugen Seiler
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia;
| | - Mária Čaplovičová
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, 812 43 Bratislava, Slovakia;
| | - Ľubomír Čaplovič
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia;
| | - Marián Palcut
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia;
| |
Collapse
|
11
|
Using nanomaterials to increase the efficiency of chemical production in microbial cell factories: A comprehensive review. Biotechnol Adv 2022; 59:107982. [DOI: 10.1016/j.biotechadv.2022.107982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
|
12
|
Yang Y, Fan X, Zhang J, Qiao S, Wang X, Zhang X, Miao L, Hou J. A critical review on the interaction of iron-based nanoparticles with blue-green algae and their metabolites: From mechanisms to applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Ahmad S, Iqbal K, Kothari R, Singh HM, Sari A, Tyagi V. A critical overview of upstream cultivation and downstream processing of algae-based biofuels: Opportunity, technological barriers and future perspective. J Biotechnol 2022; 351:74-98. [DOI: 10.1016/j.jbiotec.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/20/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
|
14
|
Andrade BB, Cardoso LG, de Souza CO, Druzian JI, Cunha Lima STD. Technological Prospecting: Electroflocculation Harvesting Procedure to Obtain Microalgae Biomass. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Lucas Guimarães Cardoso
- Laboratory of Algae Biotechnology, Department of Botany, Federal University of São Carlos, São Paulo, Brazil
| | - Carolina Oliveira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Janice Izabel Druzian
- Bromatological Analysis Department, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Suzana Telles da Cunha Lima
- Bioprospecting and Biotechnology Laboratory, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
15
|
Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. ENERGIES 2022. [DOI: 10.3390/en15041550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described.
Collapse
|
16
|
Mkpuma VO, Moheimani NR, Ennaceri H. Microalgal dewatering with focus on filtration and antifouling strategies: A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Esakkimuthu S, Wang S, Abomohra AELF. Physical stress for enhanced biofuel production from microalgae. HANDBOOK OF ALGAL BIOFUELS 2022:451-475. [DOI: 10.1016/b978-0-12-823764-9.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Koyande AK, Chew KW, Manickam S, Chang JS, Show PL. Emerging algal nanotechnology for high-value compounds: A direction to future food production. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Chen Z, Yang G, Hao X, Samak NA, Jia Y, Peh S, Mu T, Yang M, Xing J. Recent advances in microbial capture of hydrogen sulfide from sour gas via sulfur-oxidizing bacteria. Eng Life Sci 2021; 21:693-708. [PMID: 34690639 PMCID: PMC8518563 DOI: 10.1002/elsc.202100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
Biological desulfurization offers several remarkably environmental advantages of operation at ambient temperature and atmospheric pressure, no demand of toxic chemicals as well as the formation of biologically re-usable sulfur (S0), which has attracted increasing attention compared to conventionally physicochemical approaches in removing hydrogen sulfide from sour gas. However, the low biomass of SOB, the acidification of process solution, the recovery of SOB, and the selectivity of bio-S0 limit its industrial application. Therefore, more efforts should be made in the improvement of the BDS process for its industrial application via different research perspectives. This review summarized the recent research advances in the microbial capture of hydrogen sulfide from sour gas based on strain modification, absorption enhancement, and bioreactor modification. Several efficient solutions to limitations for the BDS process were proposed, which paved the way for the future development of BDS industrialization.
Collapse
Affiliation(s)
- Zheng Chen
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Gama Yang
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Xuemi Hao
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Nadia A. Samak
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
- Processes Design and Development DepartmentEgyptian Petroleum Research InstituteCairoEgypt
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Sumit Peh
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
20
|
de Lima Barizão AC, de Oliveira JP, Gonçalves RF, Cassini ST. Nanomagnetic approach applied to microalgae biomass harvesting: advances, gaps, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44795-44811. [PMID: 34244940 DOI: 10.1007/s11356-021-15260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microalgae biomass is a versatile option for a myriad of purposes, as it does not require farmable land for cultivation and due of its high CO2 fixation efficiency during growth. However, biomass harvesting is considered a bottleneck in the process because of its high cost. Magnetic harvesting is a promising method on account of its low cost, high harvesting speed, and efficiency, which can be used to improve the results of other harvesting methods. Here, we present the state of the art of the magnetic harvesting method. Detailed approaches involving different nanomaterials are described, including types, route of synthesis, and functionalization, variables that interfere with harvesting, and recycling methods of nanoparticles and medium. In addition to discussing the overall perspectives of the method, we provide a guideline for future research.
Collapse
Affiliation(s)
- Ana Carolina de Lima Barizão
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espírito Santo, Maruípe avenue, Vitória, ES, 29053-360, Brazil
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Sérvio Túlio Cassini
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
21
|
Loo GE, Chng LM, Yeap SP, Lim J, Chan DJC, Leong SS, Toh PY. Harvesting of Microalgae from Synthetic Fertilizer Wastewater by Magnetic Particles Through Embedding–Flocculation Strategy. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Savvidou MG, Dardavila MM, Georgiopoulou I, Louli V, Stamatis H, Kekos D, Voutsas E. Optimization of Microalga Chlorella vulgaris Magnetic Harvesting. NANOMATERIALS 2021; 11:nano11061614. [PMID: 34202985 PMCID: PMC8234446 DOI: 10.3390/nano11061614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Harvesting of microalgae is a crucial step in microalgae-based mass production of different high value-added products. In the present work, magnetic harvesting of Chlorella vulgaris was investigated using microwave-synthesized naked magnetite (Fe3O4) particles with an average crystallite diameter of 20 nm. Optimization of the most important parameters of the magnetic harvesting process, namely pH, mass ratio (mr) of magnetite particles to biomass (g/g), and agitation speed (rpm) of the C. vulgaris biomass-Fe3O4 particles mixture, was performed using the response surface methodology (RSM) statistical tool. Harvesting efficiencies higher than 99% were obtained for pH 3.0 and mixing speed greater or equal to 350 rpm. Recovery of magnetic particles via detachment was shown to be feasible and the recovery particles could be reused at least five times with high harvesting efficiency. Consequently, the described harvesting approach of C. vulgaris cells leads to an efficient, simple, and quick process, that does not impair the quality of the harvested biomass.
Collapse
Affiliation(s)
- Maria G. Savvidou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (M.G.S.); (D.K.)
| | - Maria Myrto Dardavila
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
- Correspondence: ; Tel.: +30-210-7723230
| | - Ioulia Georgiopoulou
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
| | - Vasiliki Louli
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece;
| | - Dimitris Kekos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (M.G.S.); (D.K.)
| | - Epaminondas Voutsas
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
| |
Collapse
|
23
|
|
24
|
Ray A, Banerjee S, Das D. Microalgal bio-flocculation: present scenario and prospects for commercialization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26294-26312. [PMID: 33797715 DOI: 10.1007/s11356-021-13437-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The need for sustainable production of renewable biofuel has been a global concern in the recent times. Overcoming the tailbacks of the first- and second-generation biofuels, third-generation biofuel using microalgae as feedstock has emerged as a plausible alternative. It has an added advantage of preventing any greenhouse gas (GHG) emissions with simultaneous carbon dioxide sequestration. Dewatering of microalgal culture is one of the many concerns regarding industrial-scale biofuel production. The small size of microalgae and dilute nature of its growth cultures creates huge operational cost during biomass separation, limiting economic feasibility of algae-based fuels. Considering the recovery efficiency, operation economics, technological feasibility and cost-effectiveness, bio-flocculation is a promising method of harvesting. Moreover, advantage of bio-flocculation over other conventional methods is that it does not incur the addition of any external chemical flocculants. This article reviews the current status of bio-flocculation technique for harvesting microalgae at industrial scale. The various microbial strains that can be prospective bioflocculants have been reviewed along with its application and advantages over chemical flocculants. Also, this article proposes that the primary focus of an appropriate harvesting technique should depend on the final utilization of the harvested biomass. This review article attempts to bring forth the beneficial aspects of microbial aided microalgal harvesting with a special attention on genetically modified self-flocculation microalgae.
Collapse
Affiliation(s)
- Ayusmita Ray
- P K Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Banerjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debabrata Das
- P K Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
25
|
He D, Zhang X, Hu J. Methods for separating microplastics from complex solid matrices: Comparative analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124640. [PMID: 33246814 DOI: 10.1016/j.jhazmat.2020.124640] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are widely found in complex solid matrices such as soil, sediments and sludge. The separation procedure is crucial for effective analysis of MPs, but existing methods varied among studies. Here, we systematically summarize and compare separation methods including density, oil, electrostatic, magnetic, and solvent extraction separation. Density separation is the most commonly used approach, but time-consuming and discharging hazardous materials dependent on extraction solutions. In contrast, oil, electrostatic, magnetic separation and solvent extraction separation are emerging approaches with advantages of low-cost, quick, or environmentally-friendly, but with high request of instruments. Despite variation among these approaches, the separation efficiency is closely related to characteristics of MPs including polymer types, sizes and shapes. The treatment of digestion and fluorescence staining can facilitate the detection of MPs. This analysis suggests that further optimization and improvement of existing approaches can facilitate the development of new separation technology for assaying MPs in complex environmental matrices.
Collapse
Affiliation(s)
- Defu He
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China.
| | - Xiaoting Zhang
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Jiani Hu
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Lv M, Li D, Zhang Z, Logan BE, Peter van der Hoek J, Sun M, Chen F, Feng Y. Magnetic seeding coagulation: Effect of Al species and magnetic particles on coagulation efficiency, residual Al, and floc properties. CHEMOSPHERE 2021; 268:129363. [PMID: 33360935 DOI: 10.1016/j.chemosphere.2020.129363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 05/12/2023]
Abstract
Magnetic seeding coagulation (MSC) process has been used to accelerate flocs sedimentation with an applied magnetic field, offering large handling capacity and low energy consumption. The interactions of three typical Al species, aluminum chloride (AlCl3), Al13O4(OH)247+ polymer (Al13), and (AlO4)2Al28(OH)5618+ polymer (Al30), with magnetic particles (MPs) were examined to clarify the MSC process. In traditional coagulation (TC) process, the aggregation of primary Ala-dissolved organic matter (DOM) complexes with in-situ-formed polynuclear species generated a large average floc size (226 μm), which was proved to be efficient for DOC removal (52.6%). The weak connections between dissolved Ala-DOM complexes and MPs led to the negligible changes of dissolved Al after seeding with MPs in AlCl3. A significant interaction between MPs and Al13 was observed, in which the MPs-Al13-DOM complexes were proposed to be responsible for the significant improvement of DOC removal (from 47% to 52%) and residual total Al reduction (from 1.05 to 0.27 mg Al L-1) with MPs addition. Al30 produced a lower floc fractal dimension (Df = 1.88) than AlCl3 (2.08) and Al13 (1.99) in the TC process, whereas its floc strength (70.9%) and floc recovery (38.5%) were higher than the others. Although more detached fragments were produced with MPs addition, the effective sedimentation of these fragments with the applied magnetic field led to the decrease of residual turbidity and colloidal Al in Al30. The dependence of coagulation behavior to MPs and different Al species can be applied to guide the application of an effective MSC process.
Collapse
Affiliation(s)
- Miao Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dongyi Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA, 16802, United States
| | - Jan Peter van der Hoek
- Department of Water Management, Delft University of Technology, PO Box 5048, 2600, GA, Delft, the Netherlands
| | - Muchen Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
27
|
Novosel N, Ivošević DeNardis N. Structural Features of the Algal Cell Determine Adhesion Behavior at a Charged Interface. ELECTROANAL 2021. [DOI: 10.1002/elan.202060580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nives Novosel
- Ruđer Bošković Institute POB 180 10 000 Zagreb Croatia
| | | |
Collapse
|
28
|
Bhatia SK, Mehariya S, Bhatia RK, Kumar M, Pugazhendhi A, Awasthi MK, Atabani AE, Kumar G, Kim W, Seo SO, Yang YH. Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141599. [PMID: 32890799 DOI: 10.1016/j.scitotenv.2020.141599] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 05/05/2023]
Abstract
Treatment of industrial and domestic wastewater is very important to protect downstream users from health risks and meet the freshwater demand of the ever-increasing world population. Different types of wastewater (textile, dairy, pharmaceutical, swine, municipal, etc.) vary in composition and require different treatment strategies. Wastewater management and treatment is an expensive process; hence, it is important to integrate relevant technology into this process to make it more feasible and cost-effective. Wastewater treatment using microalgae-based technology could be a global solution for resource recovery from wastewater and to provide affordable feedstock for bioenergy (biodiesel, biohydrogen, bio-alcohol, methane, and bioelectricity) production. Various microalgal cultivation systems (open or closed photobioreactors), turf scrubber, and hybrid systems have been developed. Although many algal biomass harvesting methods (physical, chemical, biological, and electromagnetic) have been reported, it is still an expensive process. In this review article, resource recovery from wastewater using algal cultivation, biomass harvesting, and various technologies applied in converting algal biomass into bioenergy, along with the various challenges that are encountered are discussed in brief.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
29
|
Chittapun S, Jangyubol K, Charoenrat T, Piyapittayanun C, Kasemwong K. Cationic cassava starch and its composite as flocculants for microalgal biomass separation. Int J Biol Macromol 2020; 161:917-926. [PMID: 32553968 DOI: 10.1016/j.ijbiomac.2020.06.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Commercial- and laboratory modified- cationic cassava starches and their composites with magnetic particles were examined for characteristics and separation efficiency. Scanning electron micrographs showed that cationic starch with an increasing degree of substitution (DS) value (0.0180 to 0.91) showed greater clumped polyhedral granules and became markedly enlarged with disintegrated boundaries. Zeta potential analysis revealed that the increase in the DS value in cationic starches resulted in an increase in positive charge. The maximum harvesting efficiency of 92.86 ± 0.46% was achieved when commercial cationic starch with DS 0.040 at 1.0 g L-1 was added to the Chlorella sp. solution. The maximum recovery capacity (10.20 ± 0.16 g DCW g starch-1) was recorded by using commercial cationic starch with DS 0.040 at a lower dosage of 0.1 g L-1. Their composites showed lower separation efficiency than the commercial cationic starches. The results suggest that the commercial cationic cassava starch with 0.040 DS shows great potential as a flocculant for algal separation. This first report of using commercial cationic cassava starch as a flocculant provides a low cost and convenient process to separate algal cells from the culture medium. Moreover, uncontaminated magnetic particle biomass allows for wide range of algal utilization in food and pharmaceutical biotechnologies.
Collapse
Affiliation(s)
- Supenya Chittapun
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 12120, Thailand.
| | - Kanthida Jangyubol
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 12120, Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 12120, Thailand
| | - Chanitchote Piyapittayanun
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 12120, Thailand
| | - Kittiwut Kasemwong
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong-Luang, Pathumthani 12120, Thailand
| |
Collapse
|
30
|
Xu Y, Wang X, Fu Y, Hu F, Qian G, Liu Q, Sun Y. Interaction energy and detachment of magnetic nanoparticles-algae. ENVIRONMENTAL TECHNOLOGY 2020; 41:2618-2624. [PMID: 30694112 DOI: 10.1080/09593330.2019.1575918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Magnetic separation, a promising bioseparation technology, is confronted with the challenges in recovery and recycle of magnetic matters during algae harvesting for biofuel extraction. The thermodynamic method was used to characterize the surface interactions between MNPs and algae cells. Three methods were adopted to detach magnetic nanoparticles-algae (Microcystis aeruginosa, Synechocystis sp., Nannochloropsis maritima and Stigeoclonium sp.) and recover magnetic nanoparticles (MNPs) in this study. The thermodynamic method indicated that the greatest adhesion strength was expected for Stigeoclonium sp. on MNPs. High detachment efficiency of MNP-algae was achieved by ultrasonic-extracting, which got above 90% after 5 recycles. Moreover, the harvesting efficiencies of these four algae cells could remain more than 90% after 5 recycles using a mixture of the regenerated and the raw MNPs.
Collapse
Affiliation(s)
- Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Yu Fu
- Guizhou Academy of Testing and Analysis, Guiyang, People's Republic of China
| | - Fanglu Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Ying Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Almomani F. Algal cells harvesting using cost-effective magnetic nano-particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137621. [PMID: 32146403 DOI: 10.1016/j.scitotenv.2020.137621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Innovative iron-based nanoparticles were synthesized, characterized and tested for the first time for harvesting single and mixed algal culture from real wastewater. The tailor-made magnetic nanoparticles (MNPs; Fe-MNP-I and Fe-MNP-II) achieved a percentage algae harvesting efficiency (%AHE) higher than 95% using a concentration of MNPs (CMNP) of 25 ± 0.3 (std. dev = 0.08) mg.L-1, mixing speed (Mspeed) of 120 ± 2 (std. dev = 0.10) rpm, short contact time (Ct) of 7 ± 0.1 (std. dev = 0.05) min and separation time (SPt) of 3 ± 0.1 (std. dev = 0.09) min. The optimum operational conditions for harvesting of Chlorella vulgaris (C.v) were determined at (CMNP = 40 ± 0.4 (std. dev = 0.5) gMNPs.L-1, SPt = 2.5 ± 0.4 (std. dev = 0.1) min, Mspeed = 145 ± 3 (std. dev = 1.50) rpm and Ct = 5 ± 0.3 (std. dev = 0.10) min using surface response methodology. Langmuir model describes better the adsorption behavior of algae-Fe-MNP-I system, while both Langmuir and Freundlich fit well the adsorption behavior of algae-Fe-MNP-II. The maximum adsorption capacity of Spirulina platensis (SP.PL) (18.27 ± 0.07 (std. dev = 0.19) mgDWC.mgparticles-1) was higher than that for Chlorella vulgaris (C.v) (11.52 ± 0.01 (std. dev = 0.34) mgDWC.mgparticles-1) and mixed algal culture (M.X) (17.20 ± 0.07 (std. dev = 0.54) mgDWC.mgparticles-1) over Fe-MNP-I. Zeta potential measurements revealed that the adsorption mechanism between MNPs and algal strains is controlled by electrostatic interaction. The synthesized MNPs were recycled 10 times using alkaline-ultrasonic regeneration procedure.
Collapse
Affiliation(s)
- Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
32
|
Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Liu C, Li B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. BIORESOURCE TECHNOLOGY 2020; 301:122804. [PMID: 31982297 DOI: 10.1016/j.biortech.2020.122804] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 05/05/2023]
Abstract
Biodiesel is one of the best promising candidates in response to the energy crisis, since it has the capability to minimize most of the environmental problems. Microalgae, as the feedstock of third-generation biodiesel, are considered as one of the most sustainable resources. However, microalgae production for biodiesel feedstock on a large scale is still limited, because of the influences of lipid contents, biomass productivities, lipid extraction technologies, the water used in microalgae cultivation and processes of biomass harvesting. This paper firstly reviews the recent advances in microalgae cultivation and growth processes. Subsequently, current microalgae harvesting technologies are summarized and flocculation mechanisms are analyzed, while the characteristics that the ideal harvesting methods should have are summarized. This review also summarizes the environmental pollution control performances and the key challenges in future. The key suggestions and conclusions in the paper can offer a promising roadmap for the cost-effective biodiesel production.
Collapse
Affiliation(s)
- Zhihong Yin
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China; Faculty of Technology, and Vaasa Energy Institute, University of Vaasa, PO Box 700, FI-65101 Vaasa, Finland.
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Tianyi Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Ruoyu Chu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Fan Mo
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Chenchen Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Bin Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| |
Collapse
|
33
|
Wu X, Xu G, Wang J. Ultrasound-assisted coagulation for Microcystis aeruginosa removal using Fe3O4-loaded carbon nanotubes. RSC Adv 2020; 10:13525-13531. [PMID: 35493010 PMCID: PMC9051643 DOI: 10.1039/d0ra01530j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 11/21/2022] Open
Abstract
Harmful cyanobacterial blooms are increasing environmental issues and require novel removal technology since the required doses of algaecides may cause further environmental pollution or treatment facility damage. Herein, we firstly introduce the combination of ultrasound and Fe3O4/CNTs as an alternative strategy to enhance coagulation for the removal of Microcystis aeruginosa cells in water. It remarkably enhanced cyanobacterial cell removal and microcystins control, compared with sonication alone (40 kHz ultrasonic bath, 4.2 mJ mL−1). 94.4% cyanobacterial cells were removed using 20 second sonication with 20 mg L−1 Fe3O4/CNTs, Al2(SO4)3 coagulation (20 μM). Both sonication time and catalyst dose significantly influenced the cyanobacterial removal. Ultrasound with Fe3O4/CNTs only induced a slight increase of cell permeability, which may contribute to the effective control of DOC and microcystins' release in water. The enhanced settlement of the cyanobacterial cells may result from the moderate oxidation on the cell surface. This study suggested a novel ultrasound-Fe3O4/CNT process to promote cyanobacteria removal with efficient DOC and microcystin release control, which is a green and safe technology for drinking water treatment. The combination of sonication and Fe3O4/CNTs were applied on Microcystis aeruginosa removal for the first time.![]()
Collapse
Affiliation(s)
- Xiaoge Wu
- Environment Science and Engineering College
- Yangzhou University
- Yangzhou
- China
- Jiangsu Provincial Laboratory of Water Environmental Protection Engineering
| | - Guofeng Xu
- Environment Science and Engineering College
- Yangzhou University
- Yangzhou
- China
| | - Juanjuan Wang
- Environment Science and Engineering College
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
34
|
Roy M, Mohanty K. A comprehensive review on microalgal harvesting strategies: Current status and future prospects. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101683] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Bare Iron Oxide Nanoparticles: Surface Tunability for Biomedical, Sensing and Environmental Applications. NANOMATERIALS 2019; 9:nano9111608. [PMID: 31726776 PMCID: PMC6915624 DOI: 10.3390/nano9111608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
Surface modification is widely assumed as a mandatory prerequisite for the real applicability of iron oxide nanoparticles. This is aimed to endow prolonged stability, electrolyte and pH tolerance as well as a desired specific surface chemistry for further functionalization to these materials. Nevertheless, coating processes have negative consequences on the sustainability of nanomaterial production contributing to high costs, heavy environmental impact and difficult scalability. In this view, bare iron oxide nanoparticles (BIONs) are arousing an increasing interest and the properties and advantages of pristine surface chemistry of iron oxide are becoming popular among the scientific community. In the authors’ knowledge, rare efforts were dedicated to the use of BIONs in biomedicine, biotechnology, food industry and environmental remediation. Furthermore, literature lacks examples highlighting the potential of BIONs as platforms for the creation of more complex nanostructured architectures, and emerging properties achievable by the direct manipulation of pristine iron oxide surfaces have been little studied. Based on authors’ background on BIONs, the present review is aimed at providing hints on the future expansion of these nanomaterials emphasizing the opportunities achievable by tuning their pristine surfaces.
Collapse
|
36
|
Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC. Recent advanced applications of nanomaterials in microalgae biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Abo Markeb A, Llimós-Turet J, Ferrer I, Blánquez P, Alonso A, Sánchez A, Moral-Vico J, Font X. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. WATER RESEARCH 2019; 159:490-500. [PMID: 31128473 DOI: 10.1016/j.watres.2019.05.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
A novel approach for harvesting Scenedesmus sp. microalgae from real wastewater by using adsorbents of magnetite-based nanoparticles (Fe3O4 NPs) was tested in this study for the first time for this microalgae. Using these NPs, the harvesting efficiency was even higher than 95%. The optimal conditions (0.14 gNPs/L, a short magnetic separation time of only 8 min and 27 min of contact time) were found using the response surface methodology. The best fitting of the adsorption equilibrium results was achieved by the Langmuir isotherm model, and the maximum adsorption capacity for Scenedesmus sp. reached 3.49 g dry cell weight (DCW)/g Fe3O4 NPs. Zeta potential measurements and the Dubinin-Radushkevich isotherm model analysis pointed out that the main adsorption mechanism between Scenedesmus sp. cells and Fe3O4 NPs was electrostatic interaction. Finally, Fe3O4 NPs were six times successfully reused by combining an alkaline treatment with an ultrasonication process, which implies microalgae lysis. The results herein obtained highlight the potential for magnetic separation of microalgae from wastewater, which is capable of reaching a high harvesting efficiency in a very short time.
Collapse
Affiliation(s)
- Ahmad Abo Markeb
- Departament of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Departament of Chemistry, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - Jordi Llimós-Turet
- Departament of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Paqui Blánquez
- Departament of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Amanda Alonso
- Departament of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antoni Sánchez
- Departament of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Moral-Vico
- Departament of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Xavier Font
- Departament of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
38
|
Abstract
Microalgae have been considered as one of the most promising biomass feedstocks for various industrial applications such as biofuels, animal/aquaculture feeds, food supplements, nutraceuticals, and pharmaceuticals. Several biotechnological challenges associated with algae cultivation, including the small size and negative surface charge of algal cells as well as the dilution of its cultures, need to be circumvented, which increases the cost and labor. Therefore, efficient biomass recovery or harvesting of diverse algal species represents a critical bottleneck for large-scale algal biorefinery process. Among different algae harvesting techniques (e.g., centrifugation, gravity sedimentation, screening, filtration, and air flotation), the flocculation-based processes have acquired much attention due to their promising efficiency and scalability. This review covers the basics and recent research trends of various flocculation techniques, such as auto-flocculation, bio-flocculation, chemical flocculation, particle-based flocculation, and electrochemical flocculation, and also discusses their advantages and disadvantages. The challenges and prospects for the development of eco-friendly and economical algae harvesting processes have also been outlined here.
Collapse
|
39
|
Removal of radioactive cesium from an aqueous solution via bioaccumulation by microalgae and magnetic separation. Sci Rep 2019; 9:10149. [PMID: 31300718 PMCID: PMC6626050 DOI: 10.1038/s41598-019-46586-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 11/24/2022] Open
Abstract
We evaluated the potential sequestration of cesium (Cs+) by microalgae under heterotrophic growth conditions in an attempt to ultimately develop a system for treatment of radioactive wastewater. Thus, we examined the effects of initial Cs+ concentration (100–500 μM), pH (5–9), K+ and Na+ concentrations (0–20 mg/L), and different organic carbon sources (acetate, glycerol, glucose) on Cs+ removal. Our initial comparison of nine microalgae indicated that Desmodesmus armatus SCK had removed the most Cs+ under various environmental conditions. Addition of organic substrates significantly enhanced Cs+ uptake by D. armatus, even in the presence of a competitive cation (K+). We also applied magnetic nanoparticles coated with a cationic polymer (polyethylenimine) to separate 137Cs-containing microalgal biomass under a magnetic field. Our technique of combining bioaccumulation and magnetic separation successfully removed more than 90% of the radioactive 137Cs from an aqueous medium. These results clearly demonstrate that the method described here is a promising bioremediation technique for treatment of radioactive liquid waste.
Collapse
|
40
|
Bhattacharya A, Mathur M, Kumar P, Malik A. Potential role of N-acetyl glucosamine in Aspergillus fumigatus-assisted Chlorella pyrenoidosa harvesting. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:178. [PMID: 31320926 PMCID: PMC6617575 DOI: 10.1186/s13068-019-1519-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Algal harvesting is a major cost which increases biofuel production cost. Algal biofuels are widely studied as third-generation biofuel. However, they are yet not viable because of its high production cost which is majorly contributed by energy-intensive biomass harvesting techniques. Biological harvesting method like fungal-assisted harvesting of microalgae is highly efficient but poses a challenge due to its slow kinetics and poorly understood mechanism. RESULTS In this study, we investigate Aspergillus fumigatus-Chlorella pyrenoidosa attachment resulting in a harvesting efficiency of 90% within 4 h. To pinpoint the role of extracellular metabolite, several experiments were performed by eliminating the C. pyrenoidosa or A. fumigatus spent medium from the C. pyrenoidosa-A. fumigatus mixture. In the absence of A. fumigatus spent medium, the harvesting efficiency dropped to 20% compared to > 90% in the control, which was regained after addition of A. fumigatus spent medium. Different treatments of A. fumigatus spent medium showed drop in harvesting efficiency after periodate treatment (≤ 20%) and methanol-chloroform extraction (≤ 20%), indicating the role of sugar-like moiety. HR-LC-MS (high-resolution liquid chromatography-mass spectrometry) results confirmed the presence of N-acetyl-d-glucosamine (GlcNAc) and glucose in the spent medium. When GlcNAc was used as a replacement of A. fumigatus spent medium for harvesting studies, the harvesting process was significantly faster (p < 0.05) till 4 h compared to that with glucose. Further experiments indicated that metabolically active A. fumigatus produced GlcNAc from glucose. Concanavalin A staining and FTIR (Fourier transform infrared spectroscopy) analysis of A. fumigatus spent medium- as well as GlcNAc-incubated C. pyrenoidosa cells suggested the presence of GlcNAc on its cell surface indicated by dark red dots and GlcNAc-specific peaks, while no such characteristic dots or peaks were observed in normal C. pyrenoidosa cells. HR-TEM (High-resolution Transmission electron microscopy) showed the formation of serrated edges on the C. pyrenoidosa cell surface after treatment with A. fumigatus spent medium or GlcNAc, while Atomic force microscopy (AFM) showed an increase in roughness of the C. pyrenoidosa cells surface upon incubation with A. fumigatus spent medium. CONCLUSIONS Results strongly suggest that GlcNAc present in A. fumigatus spent medium induces surface changes in C. pyrenoidosa cells that mediate the attachment to A. fumigatus hyphae. Thus, this study provides a better understanding of the A. fumigatus-assisted C. pyrenoidosa harvesting process.
Collapse
Affiliation(s)
- Arghya Bhattacharya
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| | - Megha Mathur
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| | - Pushpendar Kumar
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
41
|
|
42
|
Synthesis and Characterization of Flower-like Carbon-encapsulated Fe-C Nanoparticles for Application as Adsorbing Material. MATERIALS 2019; 12:ma12050829. [PMID: 30870977 PMCID: PMC6427276 DOI: 10.3390/ma12050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/04/2022]
Abstract
Carbon-encapsulated Fe-C (Fe-C@C) nanoparticles with a divergently flower-like morphology were successfully synthesized for application as an adsorbing material by using freeze-drying and chemical vapor deposition (CVD) methods. The Fe metallic source was first loaded onto a sodium chloride (NaCl) supporter via freeze-drying to obtain the Fe/NaCl composite powder. Then, Fe-C@C nanoparticles were synthesized in the temperature range of 300–450 °C via CVD of acetylene in the Fe/NaCl composite powder using Fe nanoparticles as catalysts and NaCl as supporters. Because the NaCl supporter is water-soluble, the synthesized Fe-C@C nanoparticles were easy to purify, and a high purity was obtained by simple washing and centrifugation. The optimal Fe-C@C nanoparticles, synthesized at 400 °C, possessed a unique divergently flower-like structure and a high specific surface area of 169.4 m2/g that can provide more adsorption sites for contaminants. Adsorption experiments showed that the flower-like Fe-C@C adsorbent exhibited high adsorption capacity (90.14 mg/g) and fast removal of methylene blue (MB). Moreover, the magnetic properties of the nanoparticles, with saturation magnetization of 36.544 emu/g, facilitated their magnetic separation from wastewater. Therefore, the novel flower-like Fe-C@C nanoparticles with integrated adsorptive and magnetic properties have the potential to be an effective adsorbent in dye wastewater treatment.
Collapse
|
43
|
Huang Y, Wei C, Liao Q, Xia A, Zhu X, Zhu X. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH. BIORESOURCE TECHNOLOGY 2019; 276:133-139. [PMID: 30623867 DOI: 10.1016/j.biortech.2018.12.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
To improve the carbon to nitrogen (C/N) ratio of harvested microalgae biomass for better producing biogas by fermentation, biodegradable cationic starch with high C/N ratio were synthesized to harvest Chlorella vulgaris. The impact of pH was also studied as the zeta potential of both microalgae and cationic starch would change with pH. Results indicated the cationic starch can harvest above 99% of the microalgae and the C/N ratio can rise from 7.50 to 7.90. The zeta potential of microalgae always kept negative and presented a trend of descending firstly and then upgrade. The maximum microalgae biomass flocculation capacity of 1 g cationic starch was 8.62 g with the help of self-flocculation at pH 3. The concentration of flocs formed at pH 11 was 25.74 g L-1 and the diameter was 0.553 mm which was much larger than the flocs formed at pH 3 (0.208 mm).
Collapse
Affiliation(s)
- Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Chaoyang Wei
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
44
|
Konečná J, Romanovská D, Horák D, Trachtová Š. Optimalization of deoxyribonucleic acid extraction using various types of magnetic particles. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-00675-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
|
46
|
Jiang S, Zhang Y, Zhao F, Yu Z, Zhou X, Chu H. Impact of transmembrane pressure (TMP) on membrane fouling in microalgae harvesting with a uniform shearing vibration membrane system. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Zhao Y, Wang X, Jiang X, Fan Q, Li X, Jiao L, Liang W. Harvesting of Chlorella vulgaris using Fe 3O 4 coated with modified plant polyphenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26246-26258. [PMID: 29978312 DOI: 10.1007/s11356-018-2677-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The Chlorella vulgaris harvesting was explored by magnetic separation using Fe3O4 particles coated with the plant polyphenol chemically modified by a Mannich reaction followed by quaternization (Fe3O4@Q-PP). The -N(R)4+ and Cl-N+-C perssad of the Q-PP were linked to the Fe3O4 particles by N-O bonds, as suggested by the X-ray photoelectron spectroscopy spectra. The thermogravimetric analysis displayed the mass percentage of the Q-PP coated on the Fe3O4 surface was close to ~ 5%. Compared with the naked Fe3O4 particles, zeta potentials of the Fe3O4@Q-PP particles were improved from the range of - 17.5~- 25.6 mV to 1.9~36.3 mV at pH 2.1~13.1. A 70.2 G coercive force was obtained for the Fe3O4@Q-PP composite, which demonstrated its ferromagnetic behavior. The use of Fe3O4@Q-PP resulted in a harvesting efficiency of 90.9% of C. vulgaris cells (3.06 g/L). The Fe3O4 particles could be detached from the cell flocs by ultrasonication leading to a recovery efficiency of 96.1% after 10 cycles. The recovered Fe3O4 could be re-coated with Q-PP and led to a harvesting efficiency of 80.2% after 10 cycles. The magnetic separation using Fe3O4@Q-PP included charge neutralization followed by bridging and then colloid entrapment.
Collapse
Affiliation(s)
- Yuan Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing, 100083, China
| | - Xiaoyu Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing, 100083, China
| | - Xiaoxue Jiang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing, 100083, China
| | - Qianlong Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing, 100083, China
| | - Xue Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing, 100083, China
| | - Liyang Jiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing, 100083, China
| | - Wenyan Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing, 100083, China.
| |
Collapse
|
48
|
Magnetic Fe3O4-polyethyleneimine nanocomposites for efficient harvesting of Chlorella zofingiensis, Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea and Botryococcus braunii. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Ferraro G, Toranzo RM, Castiglioni DM, Lima E, Vasquez Mansilla M, Fellenz NA, Zysler RD, Pasquevich DM, Bagnato C. Zinc removal by Chlorella sp. biomass and harvesting with low cost magnetic particles. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae. ENERGIES 2018. [DOI: 10.3390/en11061359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|