1
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
2
|
Tian J, Zhou S, Chen Y, Zhao Y, Li S, Yang P, Xu X, Chen Y, Cheng X, Yang J. Synthesis of Chiral Sulfoxides by A Cyclic Oxidation-Reduction Multi-Enzymatic Cascade Biocatalysis. Chemistry 2024; 30:e202304081. [PMID: 38288909 DOI: 10.1002/chem.202304081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.
Collapse
Affiliation(s)
- Jin Tian
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yanli Chen
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yuyan Zhao
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Piao Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xianlin Xu
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| |
Collapse
|
3
|
Yuzugullu Karakus Y, Goc G, Zengin Karatas M, Balci Unver S, Yorke BA, Pearson AR. Investigation of how gate residues in the main channel affect the catalytic activity of Scytalidium thermophilum catalase. Acta Crystallogr D Struct Biol 2024; 80:101-112. [PMID: 38265876 PMCID: PMC10836395 DOI: 10.1107/s2059798323011063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Å longer and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues.
Collapse
Affiliation(s)
| | - Gunce Goc
- Department of Biology, Kocaeli University, Kabaoglu, Kocaeli, Izmit 41001, Türkiye
| | - Melis Zengin Karatas
- Department of Biology, Kocaeli University, Kabaoglu, Kocaeli, Izmit 41001, Türkiye
| | - Sinem Balci Unver
- Department of Biology, Kocaeli University, Kabaoglu, Kocaeli, Izmit 41001, Türkiye
| | - Briony A. Yorke
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, HARBOR, Universitat Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Bhardwaj M, Kamble P, Mundhe P, Jindal M, Thakur P, Bajaj P. Multifaceted personality and roles of heme enzymes in industrial biotechnology. 3 Biotech 2023; 13:389. [PMID: 37942054 PMCID: PMC10630290 DOI: 10.1007/s13205-023-03804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/29/2023] [Indexed: 11/10/2023] Open
Abstract
Heme enzymes are the most prominent category of iron-containing metalloenzymes with the capability of catalyzing an astonishingly wide range of reactions like epoxidation, hydroxylation, demethylation, desaturation, reduction, sulfoxidation, and decarboxylation. Various enzymes in this category are P450s, heme peroxidases, catalases, myoglobin, cytochrome C, and others. Besides this, the natural promiscuity and amenability of these enzymes to protein engineering and evolution have also added several non-native reactions such as C-H, N-H, S-H insertions, cyclopropanation, and other industrially important reactions to their capabilities. Surprisingly, all of these reactions and their wide substrate scopes are attributed to changes in the active site scaffold of different heme enzymes as the center of all enzymes is constituted by a porphyrin ring containing iron. Multiple prominent research groups across the world, including 2018, Nobel Laureate Frances Arnold's group, have shown keen interest in engineering and evolving these enzymes for utilizing their industrial potential. Besides engineering the active site, researchers have also explored the possibility of these enzymes catalyzing non-native reactions by replacing the center porphyrin ring with other cofactors or by changing the iron in the porphyrin ring with other metal ions along with engineering the active site and thereby creating novel artificial metalloenzymes. Thus, in this mini-review from our group, for the first time, we are trying to catalog various activities catalyzed by heme enzymes and their engineered variants and their active usage in various industries along with shedding light on their potential for use in various applications in the future.
Collapse
Affiliation(s)
- Mahipal Bhardwaj
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Pranay Kamble
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Priyanka Mundhe
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Monika Jindal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Payal Thakur
- CSIR-Institute of Microbial Technology (IMTech), Sector-39A, Chandigarh, 160036 India
| | - Priyanka Bajaj
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| |
Collapse
|
5
|
Peng T, Cheng X, Chen Y, Yang J. Sulfoxide Reductases and Applications in Biocatalytic Preparation of Chiral Sulfoxides: A Mini-Review. Front Chem 2021; 9:714899. [PMID: 34490206 PMCID: PMC8417374 DOI: 10.3389/fchem.2021.714899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022] Open
Abstract
Chiral sulfoxides are valuable organosulfur compounds that have been widely used in medicinal and organic synthesis. Biocatalytic approaches for preparing chiral sulfoxides were developed in the past few years, mainly through asymmetric oxidation of prochiral sulfides. Recently, the application of sulfoxide reductase to prepare chiral sulfoxides through kinetic resolution has emerged as a new method, exhibiting extraordinary catalytic properties. This article reviews the chemical and biological functions of these sulfoxide reductases and highlights their applications in chiral sulfoxide preparation.
Collapse
Affiliation(s)
- Tao Peng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, China.,Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Khmelevtsova LE, Sazykin IS, Azhogina TN, Sazykina MA. Prokaryotic Peroxidases and Their Application in Biotechnology (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Yuzugullu Karakus Y, Isik S. Partial characterization of Bacillus pumilus catalase partitioned in poly(ethylene glycol)/sodium sulfate aqueous two-phase systems. Prep Biochem Biotechnol 2019; 49:391-399. [PMID: 30767698 DOI: 10.1080/10826068.2019.1573197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aqueous two-phase partitioning system (ATPS) was used to extract and purify catalase from Bacillus pumilus. The system parameters for effective purification of catalase were optimized. The best catalase recovery (123%) with a 4.6-fold purification was obtained in the bottom phase of ATPS including the mixture of 15% (w/w) PEG4000, 10% (w/w) Na2SO4 and 3% (w/w) NaCl at pH 5.0. The purified enzyme was characterized regarding its activity and stability. The highest enzyme activity was observed at pH 7.0 and 37 °C on hydrogen peroxide. The enzyme was quite stable at temperatures between 30 and 55 °C and a pH range of 7.0-9.0. The Km and Vmax values were determined from Lineweaver-Burk plot as 11 mM and 1667 µmole ml-1 min-1, respectively. Overall, it can be said that ATPS is a rapid, reasonable, straightforward and cost-effective process for catalase purification in comparison to the chromatographic methods.
Collapse
Affiliation(s)
| | - Semih Isik
- b The Graduate School of Natural and Applied Sciences , Kocaeli University , Kocaeli , Turkey
| |
Collapse
|
8
|
Samson M, Yang T, Omar M, Xu M, Zhang X, Alphonse U, Rao Z. Improved thermostability and catalytic efficiency of overexpressed catalase from B. pumilus ML 413 (KatX2) by introducing disulfide bond C286-C289. Enzyme Microb Technol 2018; 119:10-16. [DOI: 10.1016/j.enzmictec.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/25/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023]
|
9
|
Sangar S, Vaid B, Jolly RS. Enantio- and chemoselective oxidation of omeprazole sulfide to enantiopure (S)-omeprazole with whole-cells of Aspergillus carbonarius. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Marques Netto CGC, Palmeira DJ, Brondani PB, Andrade LH. Enzymatic reactions involving the heteroatoms from organic substrates. AN ACAD BRAS CIENC 2018; 90:943-992. [PMID: 29742205 DOI: 10.1590/0001-3765201820170741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/01/2018] [Indexed: 11/22/2022] Open
Abstract
Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.
Collapse
Affiliation(s)
| | - Dayvson J Palmeira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia B Brondani
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 2017; 47:1307-1350. [PMID: 29271432 DOI: 10.1039/c6cs00703a] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral sulfoxides are in extremely high demand in nearly every sector of the chemical industry concerned with the design and development of new synthetic reagents, drugs, and functional materials. The primary objective of this review is to update readers on the latest developments from the past five years (2011-2016) in the preparation of optically active sulfoxides. Methodologies covered include catalytic asymmetric sulfoxidation using either chemical, enzymatic, or hybrid biocatalytic means; kinetic resolution involving oxidation to sulfones, reduction to sulfides, modification of side chains, and imidation to sulfoximines; as well as various other methods including nucleophilic displacement at the sulfur atom for the desymmetrization of achiral sulfoxides, enantioselective recognition and separation based on either metal-organic frameworks (MOF's) or host-guest chemistry, and the Horner-Wadsworth-Emmons reaction. A second goal of this work concerns a critical discussion of the problem of the accurate determination of the stereochemical outcome of a reaction due to the self-disproportionation of enantiomers (SDE) phenomenon, particularly as it relates to chiral sulfoxides. The SDE is a little-appreciated phenomenon that can readily and spontaneously occur for scalemic samples when subjected to practically any physicochemical process. It has now been unequivocally demonstrated that ignorance in the SDE phenomenon inevitably leads to erroneous interpretation of the stereochemical outcome of catalytic enantioselective reactions, in particular, for the synthesis of chiral sulfoxides. It is hoped that this two-pronged approach to covering the chemistry of chiral sulfoxides will be appealing, engaging, and motivating for current research-active authors to respond to in their future publications in this exciting area of current research.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 210093 Nanjing, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69009 Heidelberg, Germany.
| | - Józef Drabowicz
- Department of Heterooganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland and Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Alicja Wzorek
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
12
|
Espariz M, Zuljan FA, Esteban L, Magni C. Taxonomic Identity Resolution of Highly Phylogenetically Related Strains and Selection of Phylogenetic Markers by Using Genome-Scale Methods: The Bacillus pumilus Group Case. PLoS One 2016; 11:e0163098. [PMID: 27658251 PMCID: PMC5033322 DOI: 10.1371/journal.pone.0163098] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/02/2016] [Indexed: 01/31/2023] Open
Abstract
Bacillus pumilus group strains have been studied due their agronomic, biotechnological or pharmaceutical potential. Classifying strains of this taxonomic group at species level is a challenging procedure since it is composed of seven species that share among them over 99.5% of 16S rRNA gene identity. In this study, first, a whole-genome in silico approach was used to accurately demarcate B. pumilus group strains, as a case of highly phylogenetically related taxa, at the species level. In order to achieve that and consequently to validate or correct taxonomic identities of genomes in public databases, an average nucleotide identity correlation, a core-based phylogenomic and a gene function repertory analyses were performed. Eventually, more than 50% such genomes were found to be misclassified. Hierarchical clustering of gene functional repertoires was also used to infer ecotypes among B. pumilus group species. Furthermore, for the first time the machine-learning algorithm Random Forest was used to rank genes in order of their importance for species classification. We found that ybbP, a gene involved in the synthesis of cyclic di-AMP, was the most important gene for accurately predicting species identity among B. pumilus group strains. Finally, principal component analysis was used to classify strains based on the distances between their ybbP genes. The methodologies described could be utilized more broadly to identify other highly phylogenetically related species in metagenomic or epidemiological assessments.
Collapse
Affiliation(s)
- Martín Espariz
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, (S2002LRK) Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
- * E-mail:
| | - Federico A. Zuljan
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, (S2002LRK) Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Luis Esteban
- Departamento de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe 3100, (S2002LRK) Rosario, Argentina
| | - Christian Magni
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, (S2002LRK) Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| |
Collapse
|
13
|
Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168. ACTA ACUST UNITED AC 2016; 43:729-40. [DOI: 10.1007/s10295-016-1758-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 103 s−1). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe2+ preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains.
Collapse
|
14
|
Loewen PC, Villanueva J, Switala J, Donald LJ, Ivancich A. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy. Proteins 2015; 83:853-66. [PMID: 25663126 DOI: 10.1002/prot.24777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 11/09/2022]
Abstract
Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.
Collapse
Affiliation(s)
- Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
15
|
Lončar N, Fraaije MW. Catalases as biocatalysts in technical applications: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:3351-7. [DOI: 10.1007/s00253-015-6512-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
|
16
|
Sooch BS, Kauldhar BS, Puri M. Recent insights into microbial catalases: Isolation, production and purification. Biotechnol Adv 2014; 32:1429-47. [DOI: 10.1016/j.biotechadv.2014.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
|
17
|
Abstract
Bacillus pumilus is a Gram-positive, rod-shaped, aerobic bacterium isolated from the soil. B. pumilus strain B6033 was originally selected as a biocatalyst for the stereospecific oxidation of β-lactams. Here, we present a 3.8-Mb assembly of its genome, which is the second fully assembled genome of a B. pumilus strain.
Collapse
|