1
|
Moya EB, Syhler B, Dragone G, Mussatto SI. Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass. Enzyme Microb Technol 2024; 175:110403. [PMID: 38341912 DOI: 10.1016/j.enzmictec.2024.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Commercially available cellulase cocktails frequently demonstrate high efficiency in hydrolyzing easily digestible pretreated biomass, which often lacks hemicellulose and/or lignin fractions. However, the challenge arises with enzymatic hydrolysis of mildly pretreated lignocellulosic biomasses, which contain cellulose, hemicellulose and lignin in high proportions. This study aimed to address this question by evaluating the supplementation of a commercial cellulolytic cocktail with accessory hemicellulases and two additives (H2O2 and Tween® 80). Statistical optimization methods were employed to enhance the release of glucose and xylose from mildly pretreated sugarcane bagasse. The optimized supplement composition resulted in the production of 304 and 124 mg g-1 DM of glucose and xylose, respectively, significantly increasing glucose release by 84% and xylose release by 94% compared to using only the cellulolytic cocktail. This enhancement might be attributed to a coordinated hemicellulases action degrading hemicellulose, creating more space for cellulase activity, potentially boosted by the presence of H2O2 and Tween® 80. However, the addition of different concentrations of H2O2 in combination with hemicellulase and Tween® 80 did not result a significant difference on sugar release, which could be attributed to the limited range of concentrations studied (5 to 65 µM). The results obtained in this study using the mix of three supplements were also compared to the addition of only hemicellulase and only Tween® 80 to the cellulolytic cocktail. A significant increase in glucose release of 39% and 41%, respectively, was observed when using the optimized combination. For xylose, the increase was 38% and 41%, respectively. This study underscores the substantial potential in optimizing enzyme cocktails for the hydrolysis of mildly pretreated lignocellulosic biomass by using enzymes and additive combinations tailored to the specific biomass composition.
Collapse
Affiliation(s)
- Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Berta Syhler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
2
|
Improved Sugar Recovery of Alkaline Pre-Treated Pineapple Leaf Fibres via Enzymatic Hydrolysis and Its Enzymatic Kinetics. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biofibre complex structure in pineapple leaf fibres (PALFs) can be disrupted using the alkaline pre-treatment method with sodium hydroxide (NaOH). Nonetheless, the pre-treated structures have an impact on the bioconversion of PALFs into sugar. Thus, the impact necessitates precise reaction conditions, which are required for the enzymatic hydrolysis of PALFs. In this study, the Box–Behnken design (BBD) was utilised to achieve maximum sugar yield from PALFs. The optimised enzymatic hydrolysis conditions were 229 µg/mL of cellulase, a reaction temperature of 45 °C, and a hydrolysis time of 69 h. Resultantly, an 84% increase in sugar yield was observed, from 17.26 mg/mL to 108.74 mg/mL after the optimisation process. Moreover, a significant influence (p = 0.0009) of the enzymatic hydrolysis on hydrolysis time and temperature was observed. Additionally, the kinetic study analysis of NaOH pre-treatment and the enzymatic hydrolysis process were investigated. The kinetics of enzyme concentrations on total reducing sugar (TRS) production using an insoluble substrate were investigated based on modified Michaelis–Menten and Chrastil models. The result of the models is in good agreement with the experimental data, as the PALF hydrolysis process was reasonably well predicted. This study provides valuable information for predicting the sugar yield of the PALF bioconversion.
Collapse
|
3
|
Jing X, Chai X, Long S, Liu T, Si M, Zheng X, Cai X. Urea/sodium hydroxide pretreatments enhance decomposition of maize straw in soils and sorption of straw residues toward herbicides. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128467. [PMID: 35220122 DOI: 10.1016/j.jhazmat.2022.128467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Because of the rigid crystalline structure and recalcitrant components, maize straw returned is slowly decomposed in soils. Straw residues are substantially accumulated in soils and pose detrimental impacts to crop plantation. Here we report the pretreatments of urea and NaOH (USH) to enhance maize straw decomposition in the field. The USH reagents interacted synergistically to destruct straw, mainly through breaking the rigid hydrogen bonding network and chemically hydrolyzing recalcitrant lignin. The synergy was evident for the USH reagents containing 6-8% urea and 0.1-1% NaOH under various temperature conditions (-20 °C to 25 °C). The USH (7%/0.1%) pretreatment resulted in notable enhancement (37%) of straw decomposition in the field within 6 months, superior to current biological-based treatments (6-28%). Moreover, this pretreatment posed no influence on the adsorption of straw residues collected at the early stage of decomposition (27 days) toward five commonly used herbicides. Those straw residues collected on 67 days and later exhibited high adsorption capacity, indicated by 0.5- to 4-folded increases in Kd values. Additionally, the impacts to soil pH and bacterial/fungal community were negligible. The USH pretreatments thus have practical interests in mitigating accumulation of straw residues in straw-returned soils.
Collapse
Affiliation(s)
- Xudong Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuhui Chai
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiqin Long
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingrui Si
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuemei Zheng
- Dalian Institute of Administration, Dalian 116013, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Soto Beobide A, Dracopoulos V, Mechichi T, Lyberatos G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains. Molecules 2022; 27:molecules27041344. [PMID: 35209130 PMCID: PMC8875012 DOI: 10.3390/molecules27041344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- Correspondence: ; Tel.: +30-261-096-5318
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Amaia Soto Beobide
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Vassilios Dracopoulos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
5
|
Zhang H, Wu J. Statistical optimization of aqueous ammonia pretreatment and enzymatic hydrolysis of corn cob powder for enhancing sugars production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Hoang AT, Nižetić S, Ong HC, Mofijur M, Ahmed SF, Ashok B, Bui VTV, Chau MQ. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. CHEMOSPHERE 2021; 281:130878. [PMID: 34022602 DOI: 10.1016/j.chemosphere.2021.130878] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
The utilization of renewable lignocellulosic biomasses for bioenergy synthesis is believed to facilitate competitive commercialization and realize affordable clean energy sources in the future. Among the pathways for biomass pretreatment methods that enhance the efficiency of the whole biofuel production process, the combined microwave irradiation and physicochemical approach is found to provide many economic and environmental benefits. Several studies on microwave-based pretreatment technologies for biomass conversion have been conducted in recent years. Although some reviews are available, most did not comprehensively analyze microwave-physicochemical pretreatment techniques for biomass conversion. The study of these techniques is crucial for sustainable biofuel generation. Therefore, the biomass pretreatment process that combines the physicochemical method with microwave-assisted irradiation is reviewed in this paper. The effects of this pretreatment process on lignocellulosic structure and the ratio of achieved components were also discussed in detail. Pretreatment processes for biomass conversion were substantially affected by temperature, irradiation time, initial feedstock components, catalyst loading, and microwave power. Consequently, neoteric technologies utilizing high efficiency-based green and sustainable solutions should receive further focus. In addition, methodologies for quantifying and evaluating effects and relevant trade-offs should be develop to facilitate the take-off of the biofuel industry with clean and sustainable goals.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| | - M Mofijur
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - B Ashok
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - Van The Vinh Bui
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam
| | - Minh Quang Chau
- Faculty of Mechanical Technology, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh City, Viet Nam
| |
Collapse
|
7
|
Scale-up approach for supercritical fluid extraction with ethanol-water modified carbon dioxide on Phyllanthus niruri for safe enriched herbal extracts. Sci Rep 2021; 11:15818. [PMID: 34349152 PMCID: PMC8338961 DOI: 10.1038/s41598-021-95222-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022] Open
Abstract
Scaling-up supercritical fluid extraction (SFE) for the extraction of bioactive compounds from herbal plants is challenging, especially with the presence of alcohol-water as co-solvent. Hence, the main objective of this study is to validate the scale-up criteria of SFE process for Phyllanthus niruri (P. niruri), and analyse the extract safety and profitability process at the industrial scale. The study was performed by using supercritical carbon dioxide (SC-CO2) with ethanol-water co-solvent at two operating conditions (L1: 200 bar, 60 °C and L2: 262 bar, 80 °C). The solvent-to-feed ratio (S/F) scale-up validation experiments were conducted at both operating conditions with feed mass capacity of 0.5 kg. The extraction yields and overall extraction curves obtained were almost similar to the predicted ones, with error of 5.13% and 14.2%, respectively. The safety of scale-up extract was evaluated by using a toxicity test against zebrafish embryo (FETT). The extract exhibited a low toxic effect with the LD50 value of 505.71 µg/mL. The economic evaluation using a detailed profitability analysis showed that the SFE of P. niruri was an economically feasible process, as it disclosed the encouraging values of return on investment (ROI) and net present values (NPV) for all scale-up capacities.
Collapse
|
8
|
Bertacchi S, Jayaprakash P, Morrissey JP, Branduardi P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb Biotechnol 2021; 15:985-995. [PMID: 34289233 PMCID: PMC8913906 DOI: 10.1111/1751-7915.13886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Biorefineries have a pivotal role in the bioeconomy scenario for the transition from fossil‐based processes towards more sustainable ones relying on renewable resources. Lignocellulose is a prominent feedstock since its abundance and relatively low cost. Microorganisms are often protagonists of biorefineries, as they contribute both to the enzymatic degradation of lignocellulose complex polymers and to the fermentative conversion of the hydrolyzed biomasses into fine and bulk chemicals. Enzymes have therefore become crucial for the development of sustainable biorefineries, being able to provide nutrients to cells from lignocellulose. Enzymatic hydrolysis can be performed by a portfolio of natural enzymes that degrade lignocellulose, often combined into cocktails. As enzymes can be deployed in different operative settings, such as separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF), their characteristics need to be combined with microbial ones to maximize the process. We therefore reviewed how the optimization of lignocellulose enzymatic hydrolysis can ameliorate bioethanol production when Saccharomyces cerevisiae is used as cell factory. Expanding beyond biofuels, enzymatic cocktail optimization can also be pivotal to unlock the potential of non‐Saccharomyces yeasts, which, thanks to broader substrate utilization, inhibitor resistance and peculiar metabolism, can widen the array of feedstocks and products of biorefineries.
Collapse
Affiliation(s)
- Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Pooja Jayaprakash
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.,School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|
9
|
Optimization of cadmium and lead biosorption onto marine Vibrio alginolyticus PBR1 employing a Box-Behnken design. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Kechkar M, Sayed W, Cabrol A, Aziza M, Ahmed Zaid T, Amrane A, Djelal H. ISOLATION AND IDENTIFICATION OF YEAST STRAINS FROM SUGARCANE MOLASSES, DATES AND FIGS FOR ETHANOL PRODUCTION UNDER CONDITIONS SIMULATING ALGAL HYDROLYSATE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20180114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Madina Kechkar
- Centre de Développement des Energies Renouvelables, Algeria; Ecole Nationale Polytechnique, Algeria
| | | | | | - Majda Aziza
- Centre de Développement des Energies Renouvelables, Algeria
| | | | | | - Hayet Djelal
- UniLaSalle-Ecole des Métiers de l’Environnement, France
| |
Collapse
|
11
|
Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:40. [PMID: 30858877 PMCID: PMC6391804 DOI: 10.1186/s13068-019-1379-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lignocellulosic hydrolysates contain a mixture of hexose (C6)/pentose (C5) sugars and pretreatment-generated inhibitors (furans, weak acids and phenolics). Therefore, robust yeast isolates with characteristics of C6/C5 fermentation and tolerance to pretreatment-derived inhibitors are pre-requisite for efficient lignocellulosic material based biorefineries. Moreover, use of thermotolerant yeast isolates will further reduce cooling cost, contamination during fermentation, and required for developing simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SScF), and consolidated bio-processing (CBP) strategies. RESULTS In this study, we evaluated thirty-five yeast isolates (belonging to six genera including Saccharomyces, Kluyveromyces, Candida, Scheffersomyces, Ogatea and Wickerhamomyces) for pretreatment-generated inhibitors {furfural, 5-hydroxymethyl furfural (5-HMF) and acetic acid} and thermotolerant phenotypes along with the fermentation performances at 40 °C. Among them, a sugarcane distillery waste isolate, Saccharomyces cerevisiae NGY10 produced maximum 49.77 ± 0.34 g/l and 46.81 ± 21.98 g/l ethanol with the efficiency of 97.39% and 93.54% at 30 °C and 40 °C, respectively, in 24 h using glucose as a carbon source. Furthermore, isolate NGY10 produced 12.25 ± 0.09 g/l and 7.18 ± 0.14 g/l of ethanol with 92.81% and 91.58% efficiency via SHF, and 30.22 g/l and 25.77 g/l ethanol with 86.43% and 73.29% efficiency via SSF using acid- and alkali-pretreated rice straw as carbon sources, respectively, at 40 °C. In addition, isolate NGY10 also produced 92.31 ± 3.39 g/l (11.7% v/v) and 33.66 ± 1.04 g/l (4.26% v/v) ethanol at 40 °C with the yields of 81.49% and 73.87% in the presence of 30% w/v glucose or 4× concentrated acid-pretreated rice straw hydrolysate, respectively. Moreover, isolate NGY10 displayed furfural- (1.5 g/l), 5-HMF (3.0 g/l), acetic acid- (0.2% v/v) and ethanol-(10.0% v/v) tolerant phenotypes. CONCLUSION A sugarcane distillery waste isolate NGY10 demonstrated high potential for ethanol production, C5 metabolic engineering and developing strategies for SSF, SScF and CBP.
Collapse
Affiliation(s)
- Ajay Kumar Pandey
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Sonam Kumari
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Priya Kumari
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Farnaz Yusuf
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Shaik Jakeer
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Sumera Naz
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Piyush Chandna
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Ishita Bhatnagar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Naseem A. Gaur
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| |
Collapse
|
12
|
Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. BIORESOURCE TECHNOLOGY 2018; 268:355-362. [PMID: 30096643 DOI: 10.1016/j.biortech.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 05/26/2023]
Abstract
Phosphoric acid plus hydrogen peroxide (PHP) pretreatment was employed on wheat straw for ethanol conversion by simultaneous saccharification and fermentation (SSF) at high loadings. Results showed solid loading of PHP-pretreated wheat straw can be greatly promoted to 20%. Although more enzyme input improved ethanol conversion significantly, it still can be potentially reduced to 10-20 mg protein/g cellulose. Increasing yeast input also promoted ethanol conversion, however, the responses were not significant. Response surface method was employed to optimize SSF conditions with the strategy of maximizing ethanol conversion and concentration and minimizing enzyme and yeast input. Results indicated that ethanol conversion of 88.2% and concentration of 69.9 g/L were obtained after 120 h SSF at solid loading of 15.3%, and CTec2 enzyme and yeast were in lower input of 13.2 mg protein/g cellulose and 1.0 g/L, respectively. Consequently, 15.5 g ethanol was harvested from 100 g wheat straw in the optimal conditions.
Collapse
Affiliation(s)
- Jingwen Qiu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FIN-00076 Aalto, Finland
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
13
|
Pandey RK, Chand K, Tewari L. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4411-4419. [PMID: 29435990 DOI: 10.1002/jsfa.8963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Lignocellulosic biomass from bamboo is an attractive feedstock for the bioethanol industry owing to its high cellulosic content and fast growth rate. In this study, powdery biomass was first enzymatically delignified and then saccharified using crude enzymes. RESULTS The biological pretreatment decreased the lignin content of the biomass from an initial value of 295 to 137.7 g kg-1 , with a simultaneous increase in exposed cellulose content from 379.3 to 615.9 g kg-1 . For optimization of the saccharification, response surface methodology was adopted using a three-factor/three-level Box-Behnken design with crude fungal cellulase loading (FPU g-1 substrate), substrate concentration (% w/v) and saccharification temperature (°C) as the main process parameters. A maximum saccharification yield of 47.19% was achieved under the optimized conditions (cellulase enzyme 18.4 FPU g-1 substrate, substrate concentration 1.0% w/v, temperature 39.49 °C). Biological delignification and saccharification of the biomass were further confirmed through scanning electron microscopy analysis. CONCLUSION It is evident from the study that bamboo, as a renewable energy bioresource, can be hydrolysed to reducing sugars by using crude laccase/cellulase enzymes of fungal origin with good saccharification yield. Thus crude enzyme preparations could be utilized efficiently for eco-friendly and cost-effective bioethanol production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raj Kumar Pandey
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Khan Chand
- Department of Post Harvest Process and Food Engineering, College of Technology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Lakshmi Tewari
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
14
|
Ntaikou I, Menis N, Alexandropoulou M, Antonopoulou G, Lyberatos G. Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. BIORESOURCE TECHNOLOGY 2018; 263:75-83. [PMID: 29730521 DOI: 10.1016/j.biortech.2018.04.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The biotransformation of the pre-dried and shredded organic fraction of kitchen waste to ethanol was investigated, via co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis (Scheffersomyces stipitis). Preliminary experiments with synthetic media were performed, in order to investigate the effect of different operational parameters on the ethanol production efficiency of the co-culture. The control of the pH and the supplementation with organic nitrogen were shown to be key factors for the optimization of the process. Subsequently, the ethanol production efficiency from the waste was assessed via simultaneous saccharification and fermentation experiments. Different loadings of cellulolytic enzymes and mixtures of cellulolytic with amylolytic enzymatic blends were tested in order to enhance the substrate conversion efficiency. It was further shown that for solids loading up to 40% waste on dry mass basis, corresponding to 170 g.L-1 initial concentration of carbohydrates, no substrate inhibition occurred, and ethanol concentration up to 45 g.L-1 was achieved.
Collapse
Affiliation(s)
- Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patra, Greece; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece.
| | - Nikolaos Menis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patra, Greece
| | - Maria Alexandropoulou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patra, Greece; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patra, Greece; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patra, Greece; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece
| |
Collapse
|
15
|
Ben Hmad I, Gargouri A. Two Distinct Hydrolysis Mechanisms of the Neutral Endoglucanases EG1 and EG2 of Stachybotrys microspora. Catal Letters 2018. [DOI: 10.1007/s10562-018-2410-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Takano M, Hoshino K. Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0203-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Abada E, Al-Fifi Z, Osman M. Bioethanol production with carboxymethylcellulase of Pseudomonas poae using castor bean ( Ricinus communis L.) cake. Saudi J Biol Sci 2018; 26:866-871. [PMID: 31049016 PMCID: PMC6486512 DOI: 10.1016/j.sjbs.2018.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
Increased consumption of fossil fuels is an emerging problem. Scientists look for the existence of other alternatives to fossil fuels, including so-called renewable energy. Accordingly, we report the production of bio-ethanol from the remnants of castor oil bean seed cake (CBC) by the carboxymethylcellulase enzyme (CMCase). A bacterial strain isolated from rice straw showing higher CMCase activity was identified. The 16S rRNA result showed a 93% homology with the 16SrRNA gene sequences of Pseudomonas poae RE∗1-1-14, the strain was identified as Pseudomonas poae AB3. In addition, our results showed that the highest enzyme activity was achieved after 48 h and inoculum size of 3.7 × 105 CFU. The optimum temperature, pH and Carboxymethylcellulose (CMC) concentration for the highest enzyme activity was 25 °C, pH 7 and 10 g/l respectively. Furthermore, The CMCase was purified by ammonium sulphate at a concentration of 60%. The SDS-PAGE of the purified enzyme showed a molecular weight of 88 kDa. Additionally, the (CBC) was hydrolyzed by the purified CMCase at the enzyme optimum conditions. The results showed the liberation of 5.2 g/L of reducing sugar by using dinitrosalicylic acid (DNS) assay. Finally, the total sugar produces 35 g/L after 48 h when Saccharomyces cerevisiae was used as a fermentation agent. Hence for the first time, we have been successfully able to produce bioethanol from CBC with CMCase of Pseudomonas poae.
Collapse
Affiliation(s)
- Emad Abada
- Botany and Microbiology Dep., Faculty of Science, Helwan University, Cairo, Egypt.,Biology Dep., Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Zarraq Al-Fifi
- Biology Dep., Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohamed Osman
- Botany and Microbiology Dep., Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
18
|
Patel H, Divecha J, Shah A. Microwave assisted alkali treated wheat straw as a substrate for co-production of (hemi)cellulolytic enzymes and development of balanced enzyme cocktail for its enhanced saccharification. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Aramrueang N, Zicari SM, Zhang R. Response Surface Optimization of Enzymatic Hydrolysis of Sugar Beet Leaves into Fermentable Sugars for Bioethanol Production. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abb.2017.82004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Dhami NK, Mukherjee A, Reddy MS. Applicability of bacterial biocementation in sustainable construction materials. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Navdeep Kaur Dhami
- Department of Civil Engineering; Curtin University; GPO Box U1987 Perth Western Australia Australia
| | - Abhijit Mukherjee
- Department of Civil Engineering; Curtin University; GPO Box U1987 Perth Western Australia Australia
| | - M. Sudhakara Reddy
- Department of Biotechnology; Thapar University; Patiala 147004 Punjab India
| |
Collapse
|
21
|
Du SK, Su X, Yang W, Wang Y, Kuang M, Ma L, Fang D, Zhou D. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydr Polym 2016; 140:279-86. [DOI: 10.1016/j.carbpol.2015.12.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
|
22
|
Kim M, Liang M, He Q, Wang J. A novel bioreactor to study the dynamics of co-culture systems. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei. PLoS One 2015; 10:e0144233. [PMID: 26656155 PMCID: PMC4686103 DOI: 10.1371/journal.pone.0144233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/16/2015] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.
Collapse
|
24
|
Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 2015; 5:337-353. [PMID: 28324547 PMCID: PMC4522714 DOI: 10.1007/s13205-014-0246-5] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 12/02/2022] Open
Abstract
Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulose-rich biomass resources available in huge amounts for bioethanol production. These agricultural residues are converted to bioethanol in several steps which are described here. This review enlightens various steps involved in production of the second-generation bioethanol. Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.
Collapse
Affiliation(s)
- Jitendra Kumar Saini
- Department of Microbiology, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, 263145, India.
- DBT-IOC Centre for Advanced Bio-Energy Research, Research and Development Centre, Indian Oil Corporation Ltd., Sector-13, Faridabad, 121007, Haryana, India.
| | - Reetu Saini
- Department of Microbiology, M.S. Garg P.G. College, Laksar, Haridwar, 247663, India
- DBT-IOC Centre for Advanced Bio-Energy Research, Research and Development Centre, Indian Oil Corporation Ltd., Sector-13, Faridabad, 121007, Haryana, India
| | - Lakshmi Tewari
- Department of Microbiology, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, 263145, India
| |
Collapse
|
25
|
Design and optimization of a sono-hybrid process for bioethanol production from Parthenium hysterophorus. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Effects of Surfactants and Microwave-assisted Pretreatment of Orange Peel on Extracellular Enzymes Production by Aspergillus japonicus PJ01. Appl Biochem Biotechnol 2015; 176:758-71. [DOI: 10.1007/s12010-015-1609-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/06/2015] [Indexed: 11/26/2022]
|
27
|
Nikzad M, Movagharnejad K, Talebnia F, Aghaiy Z, Mighani M. Modeling of Alkali Pretreatment of Rice Husk Using Response Surface Methodology and Artificial Neural Network. CHEM ENG COMMUN 2015. [DOI: 10.1080/00986445.2013.871707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Keskin Gündoğdu T, Deniz İ, Çalışkan G, Şahin ES, Azbar N. Experimental design methods for bioengineering applications. Crit Rev Biotechnol 2014; 36:368-88. [DOI: 10.3109/07388551.2014.973014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Singhania RR, Saini JK, Saini R, Adsul M, Mathur A, Gupta R, Tuli DK. Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. BIORESOURCE TECHNOLOGY 2014; 169:490-495. [PMID: 25086433 DOI: 10.1016/j.biortech.2014.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 05/07/2023]
Abstract
This study concerns in-house development of cellulases from a mutant Penicillium janthinellum EMS-UV-8 and its application in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes for bioethanol production from pre-treated wheat straw. In a 5L fermentor, the above strain could produce cellulases having activity of 3.1 FPU/mL and a specific activity of 0.83 FPU/mg of protein. In-house developed cellulase worked more efficiently in case of SSF as ethanol concentration of 21.6g/L and yield of 54.4% were obtained which were higher in comparison to SHF (ethanol concentration 12 g/L and 30.2% yield). This enzyme preparation when compared with commercial cellulase for hydrolysis of pre-treated wheat straw was found competitive. This study demonstrates that P. janthinellum EMS-UV-8 is a potential fungus for future large-scale production of cellulases.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd., R&D Centre, Sector-13, Faridabad 121007, India
| | - Jitendra Kumar Saini
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd., R&D Centre, Sector-13, Faridabad 121007, India
| | - Reetu Saini
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd., R&D Centre, Sector-13, Faridabad 121007, India
| | - Mukund Adsul
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd., R&D Centre, Sector-13, Faridabad 121007, India
| | - Anshu Mathur
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd., R&D Centre, Sector-13, Faridabad 121007, India
| | - Ravi Gupta
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd., R&D Centre, Sector-13, Faridabad 121007, India
| | - Deepak Kumar Tuli
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd., R&D Centre, Sector-13, Faridabad 121007, India.
| |
Collapse
|
30
|
Singh S, Moholkar VS, Goyal A. Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35. 3 Biotech 2014; 4:411-424. [PMID: 28324477 PMCID: PMC4145630 DOI: 10.1007/s13205-013-0169-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022] Open
Abstract
In this paper, we have attempted optimization of production of enzyme carboxymethylcellulase or endoglucanase from the bacterium Bacillus amyloliquefaciens SS35. Optimization has been carried out in two stages using statistical experimental design, viz. medium optimization and optimization of fermentation parameters. For medium optimization, Plackett–Burman design followed by central composite design (CCD) was used, while for optimization of fermentation parameters one-variable-at-a-time method followed by CCD was used. Carbon and nitrogen sources in the medium have been revealed to be the significant factors for enzyme production (carboxymethylcellulose 18.05 g/L; yeast extract 8 g/L and peptone 2 g/L). The inorganic salts have been found to be insignificant components of medium. Optimum fermentation parameters for optimized medium were: initial medium pH 5.65, incubation temperature = 40 °C, shaking speed = 120 rpm, and inoculum size = 6.96 %, v/v. Interestingly, the influence of all four parameters was almost independent with no interlinks. Secondly, the overall effect of all parameters was also low, as indicated by linear, square and interaction regression coefficients that were at least one order of magnitude lower than the intercept in the model equation. These results essentially meant that medium components dominate overall enzyme production process in comparison to fermentation parameters.
Collapse
|
31
|
Balasubramanian N, Simões N. Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int J Biol Macromol 2014; 67:132-9. [DOI: 10.1016/j.ijbiomac.2014.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 11/29/2022]
|
32
|
Wu Z, Zhang M, Wang L, Tu Y, Zhang J, Xie G, Zou W, Li F, Guo K, Li Q, Gao C, Peng L. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:183. [PMID: 24341349 PMCID: PMC3878626 DOI: 10.1186/1754-6834-6-183] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/26/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility. RESULTS Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains in the future. CONCLUSIONS Using nine typical pairs of wheat and rice samples having distinct cell wall compositions and wide biomass saccharification, Ara substitution degree and monolignin H proportion have been revealed to be the dominant factors positively determining biomass digestibility upon various chemical pretreatments. The results demonstrated the potential of genetic modification of plant cell walls for high biomass saccharification in bioenergy crops.
Collapse
Affiliation(s)
- Zhiliang Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingqiang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guosheng Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihua Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengcheng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunbao Gao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Pensupa N, Jin M, Kokolski M, Archer DB, Du C. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. BIORESOURCE TECHNOLOGY 2013; 149:261-7. [PMID: 24121367 PMCID: PMC3824065 DOI: 10.1016/j.biortech.2013.09.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 05/03/2023]
Abstract
This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase.
Collapse
Affiliation(s)
- Nattha Pensupa
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Meng Jin
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Matt Kokolski
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - David B. Archer
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Chenyu Du
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
34
|
Vats S, Negi S. Use of artificial neural network (ANN) for the development of bioprocess using Pinus roxburghii fallen foliages for the release of polyphenols and reducing sugars. BIORESOURCE TECHNOLOGY 2013; 140:392-398. [PMID: 23711945 DOI: 10.1016/j.biortech.2013.04.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
In present study, different parameters, i.e., percentage of NaOH, loading volume, microwave power (watt) and volume of water during pretreatment were optimized by ANN for release of polyphenols and sugars from pine fallen foliage. ANN used was feed forward back propagation type with 72 input, 72 output and 10 hidden layers coupled with Lvenberg-Marquardt (LM) training algorithms. The predicted optimal values by generated neural network for alkali pretreatment were 6 ml (0.5% NaOH)/g of substrate, soaking time of 10 min followed by 1 min of 100 W microwave. Pretreated sample on enzymatic hydrolysis at 50°C for 20 h with cocktail of cellulase, xylanase and laccase produced by locally isolated consortia released 668.9 mg/g of total sugar and 265.06 mg/g of total polyphenols. Optimization by ANN showed good yield, therefore, indicating its suitability for bioprocess modeling and control for release of reducing sugars and polyphenols from pine foliage.
Collapse
Affiliation(s)
- Siddharth Vats
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211 004, India
| | | |
Collapse
|
35
|
Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 2013; 97:6129-47. [DOI: 10.1007/s00253-013-5014-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022]
|