1
|
Bhattacharya R. Removal of nitric oxide in bioreactors: a review on the pathways, governing factors and mathematical modelling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12617-12646. [PMID: 38236567 DOI: 10.1007/s11356-024-31919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
The constant surge in nitric oxide in the atmosphere results in severe environmental degradation, negatively impacting human health and ecosystems, and is presently a global concern. Widely used physicochemical technologies for nitric oxide (NO) removal comes with high installation and operational costs and the production of secondary pollutants. Thus, biological treatment has been emphasized over the last two decades, but the poor solubility of NO in water makes it a challenging issue. The present article reviews the various technical aspects of biological treatment of nitric oxide, including the removal pathways and reactor configurations involved in the process. The most widely used technologies in this regard are chemical adsorption processes followed by biological reactors like biofilters, biotrickling filters and membrane bioreactors that enhance NO solubility and offer the flexibility and scope of further improvement in process design. The effect of various experimental and operational parameters on NO removal, including pH, carbon source, gas flow rate, gas residence time and presence of inhibitory components in the flue gas, is also discussed along with the developed mathematical models for predicting NO removal in a biological treatment system. There is an extensive scope of investigation regarding the development of an economical system to remove NO, and an exhaustive model that would optimize the process considering maximum practical parameters encountered during such operation. A detailed discussion made in this article gives a proper insight into all these areas.
Collapse
Affiliation(s)
- Roumi Bhattacharya
- Civil Engineering Department, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, 711103, India.
| |
Collapse
|
2
|
Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes (Basel) 2022. [DOI: 10.3390/pr10122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biotrickling filtration is a well-established technology for the treatment of air polluted with odorous and volatile organic compounds (VOCs). Besides dozens of successful industrial applications of this technology, there are still gaps in a full understanding and description of the mechanisms of biotrickling filtration. This review focuses on recent research results on biotrickling filtration of air polluted with single and multiple VOCs, as well as process modeling. The modeling offers optimization of a process design and performance, as well as allows deeper understanding of process mechanisms. An overview of the developments of models describing biotrickling filtration and conventional biofiltration, as primarily developed and in many aspects through similar processes, is presented in this paper.
Collapse
|
3
|
Modelling of Biotrickling Filters for Treatment of NOx Analytical Expressions for the NOx Concentration in Both Gas and Biofilm Phases. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A mathematical model of an ideal biotrickling filter (BF) system that inoculates a recently identified strain of Chelatococcus daeguensis TAD1 and brings about efficient nitrogen oxide treatment is discussed. The proposed model is based on nonlinear mass transport equations at the gas–biofilm interface. Using Akbari–Ganji’s technique, approximate analytical expressions for the nitric oxide concentration in the gaseous and biofilm phases were developed for all feasible system parameters. In addition, to investigate the dynamic behaviour of the system, a numerical analysis of the problem is provided using MATLAB tools. To demonstrate this new approach, graphical data are provided and quantitatively discussed. This theoretical result has good agreement with the numerical simulation (MATLAB) results for the experimental values of parameters.
Collapse
|
4
|
Xie Z, Du S, Ma T, Hou J, Zeng X, Li Y. High time-resolved characterization of airborne microbial community during a typical haze pollution process. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125722. [PMID: 34088212 DOI: 10.1016/j.jhazmat.2021.125722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Variations of bioaerosol characteristics during the process of haze pollution have rarely been explored. In this study, high time-resolved variations of the community structures of bacteria, fungi, and ammonia-oxidizing microorganisms (AOMs) were assessed during a typical haze pollution process. The impacts of meteorological factors, water-soluble inorganic ions (WSII), and organic dicarboxylic acids (DCA) on the airborne microbial community were systematically evaluated. The results showed that the bacterial community varied greatly during the formation stages of haze pollution, and tended to stabilize with the further development of haze pollution. Nevertheless, variations of the fungal community lasted throughout the whole haze pollution process. Furthermore, Nitrososphaera absolutely dominated the ammonia-oxidizing archaea (AOA) and declined as PM2.5 burst. Network analysis identified relatively weak interactions and co-occurrence patterns between dominant fungal genera. Importantly, dust source ions and PM2.5 acidity exerted the most significant impacts on bacterial and fungal communities. These results identify the high time-resolved variations of airborne microbial communities during the formation and development of haze pollution process, and provide valuable data to better understand the interaction between bioaerosols and haze pollution.
Collapse
Affiliation(s)
- Zhengsheng Xie
- School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Shengli Du
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Tianfeng Ma
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Junli Hou
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xuelin Zeng
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Chang'an University), Ministry of Education, Xi'an 710054, China.
| |
Collapse
|
5
|
Huang Z, Wei Z, Tang M, Yu S, Jiao H. Biological treatments of mercury and nitrogen oxides in flue gas: biochemical foundations, technological potentials, and recent advances. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:133-168. [PMID: 34353503 DOI: 10.1016/bs.aambs.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitrogen oxides (NOx) and mercury (Hg) are commonly found coexistent pollutants in combustion flue gas. Ever-increasing emission of atmospheric Hg and NOx has caused considerable environmental risks. Traditional flue gas demercuration and denitration techniques have many socioeconomic, technological and environmental drawbacks. Biotechnologies can be a promising and prospective alternative strategy. This article discusses theoretical foundation (biochemistry and genomic basis) and technical potentials (Hg0 bio-oxidation coupled to denitrification) of bioremoval of Hg and NOx in flue gas and summarized recent experimental and technological advances. Finally, several specific technical perspectives have been put forward to better guide future researches.
Collapse
Affiliation(s)
- Zhenshan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Zaishan Wei
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| | - Meiru Tang
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shan Yu
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Huaiyong Jiao
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| |
Collapse
|
6
|
Yang JR, Wang Y, Chen H, Ren RP, Lv YK. A new approach for the effective removal of NO x from flue gas by using an integrated system of oxidation-absorption-biological reduction. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124109. [PMID: 33049641 DOI: 10.1016/j.jhazmat.2020.124109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
A new process of NOx removal from flue gas, using an integrated system of oxidation-absorption-biological reduction (OABR), is introduced. The experimental results show that increasing the NOx oxidation ratio in flue gas can effectively improve the NOx removal efficiency of the OABR system. The NOx removal efficiency could reach 98.8% with 0.02 M NaHCO3 as the chemical absorbent and under the condition of the optimal NOx oxidation ratio of 50%. During stable operation, the OABR system could maintain a high NOx removal efficiency (above 94%) under the following conditions: 1-8 vol% (104-8 × 104 ppmv) O2, 200-800 ppmv NOx, 0.5-1.5 L/min gas flow rate and 100-800 ppmv SO2. The nitrogen equilibrium results showed that about 59% of the nitrogen in the inlet NOx were transformed to N2 through microbial denitrification, 37% of the nitrogen were converted to biological nitrogen for microbial growth, and only 1.1% of the nitrogen remained in the liquid phase. This new approach has an excellent NOx removal performance and great potential for industrial application.
Collapse
Affiliation(s)
- Jing-Rui Yang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Ying Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Hu Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Rui-Peng Ren
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yong-Kang Lv
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
7
|
Synthesis and Performance of Iron Oxide-Coated Ceramsite in a Biotrickling Filter for Nitric Oxide Removal under Thermophilic Conditions. MATERIALS 2018; 11:ma11030359. [PMID: 29495621 PMCID: PMC5872938 DOI: 10.3390/ma11030359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022]
Abstract
A novel medium consisting of iron oxide-coated porous ceramsite (modified ceramsite) was investigated for NO removal under thermophilic conditions in this study. We used a surface coating method with FeCl3·6H2O as the modifier. When ceramsite was calcined for 4 h at 500 °C, the surface pH value decreased to 3.46, which is much lower than the isoelectric point of ceramsite, ensuring its surface was electropositive. The surface of modified ceramsite changed from two- to three-dimensional and exhibited excellent adsorption behavior to assist microbial growth; the maximum dry weight of the biofilm was 1.28 mg/g. It only took 8 days for the biofilter constructed from the modified ceramsite to start up, whereas that packed with commercial ceramsite took 22 days. The NO removal efficiency of the biofilter did not decrease apparently at high NO inlet concentration of above 1600 mg/m3 and maintained an average value of above 90% during the whole operation period. Additionally, the morphological observation showed that the loss of the surface coating was not obvious, and the coating properties remained stable during long-term operation. The maximum NO inlet loading of the biotrickling filter was 80 g/(m3·h) with an average removal efficiency of 91.1% along with a quick start-up when using the modified ceramsite filler. Thus, modified ceramsite can be considered a very effective medium in biotrickling filters for NO removal.
Collapse
|
8
|
Yang Y, Lin E, Huang S. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1. Braz J Microbiol 2017; 48:615-616. [PMID: 28610831 PMCID: PMC5628317 DOI: 10.1016/j.bjm.2017.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal.
Collapse
Affiliation(s)
- Yunlong Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ershu Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaobin Huang
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, China; School of Environment and Energy, South China University of Technology, Guangzhou, China.
| |
Collapse
|
9
|
Wei Z, Huang S, Zhang Y, Li H, Zhou S. Characterization of extracellular polymeric substances produced during nitrate removal by a thermophilic bacterium Chelatococcus daeguensis TAD1 in batch cultures. RSC Adv 2017. [DOI: 10.1039/c7ra08147b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Positive correlation was observed between EPS production and nitrate removal efficiency during aerobic denitrification byChelatococcus daeguensisTAD1.
Collapse
Affiliation(s)
- Zhendong Wei
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Shaobin Huang
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Yongqing Zhang
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Han Li
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Shaofeng Zhou
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| |
Collapse
|
10
|
Study of extracellular polymeric substances in the biofilms of a suspended biofilter for nitric oxide removal. Appl Microbiol Biotechnol 2016; 100:9733-9743. [DOI: 10.1007/s00253-016-7824-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
|
11
|
Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals. J Microbiol 2016; 54:602-610. [DOI: 10.1007/s12275-016-5295-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
|
12
|
Han L, Shaobin H, Zhendong W, Pengfei C, Yongqing Z. Performance of a new suspended filler biofilter for removal of nitrogen oxides under thermophilic conditions and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:533-541. [PMID: 27110967 DOI: 10.1016/j.scitotenv.2016.04.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
A suspended biofilter, as a new bioreactor, was constructed for the removal of nitrogen oxides (NOX) from simulated flue gas under thermophilic conditions. The suspended biofilter could be quickly started up by inoculating the thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1. The NO concentration in the inlet stream ranged from 200mg/m(3) to 2000mg/m(3) during the operation, and inlet loading ranged from 8.2-164g/(m(3)·h). The whole operation period was divided into four phases according to the EBRT. The EBRT of phases I, II, III and IV were 88s (9-43d), 44s (44-61d), 66s (62-79d) and 132s (80-97d), respectively. An average NO removal efficiency of 90% was achieved during the whole operation period, and the elimination capacity increased linearly with the increase in NO inlet loading and the maximum elimination capacity reached 146.9g/(m(3)·h). No clogging was observed, although there was a high biomass concentration in the biofilter bed. The remarkable performance in terms of NO removal could be attributed to the rich bacterial communities. The microbial community structure in the biofilm was investigated by high throughput sequencing analysis (16S rRNA MiSeq sequencing). The experimental results showed that the microbial community structure of the biofilm was very rich in diversity, with the most abundant bacterial class of the Alphaproteobacteria, which accounted for 36.5% of the total bacteria, followed by Gammaproteobacteria (30.7%) and Clostridia (27.5%). It was worthwhile to mention that the dominant species in the suspended biofilter biofilm were all common denitrifying bacteria including Rhizobiales (inoculated microbe), Rhodospirillales, Enterobacteriales and Pseudomonadales, which accounted for 19.4%, 17%, 21.6% and 7%, respectively. The inoculated strain TAD1 belonged to Alphaproteobacteria class. Because high-throughput 16S rRNA gene paired-end sequencing has improved resolution of bacterial community analysis, 16S rRNA gene sequencing of these bacteria could provide more functional and phylogenetic information about the bacterial communities.
Collapse
Affiliation(s)
- Li Han
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Huang Shaobin
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Wei Zhendong
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Chen Pengfei
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Zhang Yongqing
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Li H, Pan M, Zhou S, Huang S, Zhang Y. Characterization of nitrous oxide emissions from a thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in an aerated sequencing batch reactor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Schiavon M, Ragazzi M, Rada EC, Torretta V. Air pollution control through biotrickling filters: a review considering operational aspects and expected performance. Crit Rev Biotechnol 2015; 36:1143-1155. [PMID: 26482296 DOI: 10.3109/07388551.2015.1100586] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The biological removal of pollutants, especially through biotrickling filters (BTFs), has recently become attractive for the low investment and operational costs and the low secondary pollution. This paper is intended to investigate the state of the art on BTF applications. After an overview on the biodegradation process and the typical parameters involved, this paper presents the analysis of a group of 16 literature studies chosen as the references for this sector. The reference studies differ from one another by the pollutants treated (volatile organic compounds [VOC], hydrogen sulphide, nitrogen oxides and trimethylamine), the geometry and size of the BTFs, and the procedures of the tests. The reference studies are analyzed and discussed in terms of the operational conditions and the results obtained, especially with respect to the removal efficiencies (REs) and the elimination capacities (ECs) of the pollutants considered. Empty bed residence time (EBRT), pollutant loading rate, temperature, pH, oxygen availability, trickling liquid flow rate, inoculum selection and biomass control strategies revealed to be the most important operational factors influencing the removal performance of a BTF.
Collapse
Affiliation(s)
- Marco Schiavon
- a Department of Civil , Environmental and Mechanical Engineering - University of Trento , Trento , Italy , and
| | - Marco Ragazzi
- a Department of Civil , Environmental and Mechanical Engineering - University of Trento , Trento , Italy , and
| | - Elena Cristina Rada
- a Department of Civil , Environmental and Mechanical Engineering - University of Trento , Trento , Italy , and.,b Department of Biotechnologies and Life Sciences - University of Insubria , Varese , Italy
| | - Vincenzo Torretta
- b Department of Biotechnologies and Life Sciences - University of Insubria , Varese , Italy
| |
Collapse
|
15
|
Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas. Appl Microbiol Biotechnol 2014; 98:8497-512. [PMID: 25149446 DOI: 10.1007/s00253-014-6016-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 01/09/2023]
Abstract
Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas.
Collapse
|
16
|
López ME, Boger Z, Rene ER, Veiga MC, Kennes C. Transient-state studies and neural modeling of the removal of a gas-phase pollutant mixture in a biotrickling filter. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:45-55. [PMID: 24315813 DOI: 10.1016/j.jhazmat.2013.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
The removal efficiency (RE) of gas-phase hydrogen sulfide (H), methanol (M) and α-pinene (P) in a biotrickling filter (BTF) was modeled using artificial neural networks (ANNs). The inlet concentrations of H, M, P, unit flow and operation time were used as the model inputs, while the outputs were the RE of H, M and P, respectively. After testing and validating the results, an optimal network topology of 5-8-3 was obtained. The model predictions were analyzed using Casual index (CI) values. M removal in the BTF was influenced positively by the inlet concentration of M in mixture (CI=3.79), while the removal of P and H were influenced more by the time of BTF operation (CI=25.36, 15.62). The BTF was subjected to different types of short-term shock-loads: 5-h shock-load of HMP mixture simultaneously, and 2.5-h shock-load of either H, M, or P, individually. It was observed that, short-term shock-loads of individual pollutants (M or H) did not significantly affect their own removal, but the removal of P was affected by 50%. The results from this study also show the sensitiveness of the well-acclimated BTF to handle sudden load variations and also revival capability of the BTF when pre-shock conditions were restored.
Collapse
Affiliation(s)
- M Estefanía López
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain
| | - Zvi Boger
- OPTIMAL - Industrial Neural Systems, 54 Rambal St., Be'er Sheva 84243, Israel
| | - Eldon R Rene
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain.
| |
Collapse
|