1
|
Lee R, Smith BA, Roy HM, Leite GB, Champagne P, Jessop PG. Extraction of lipids from microalgal slurries with liquid CO2. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
2
|
Dias C, Nobre B, Santos JA, da Silva TL, Reis A. Direct lipid and carotenoid extraction from Rhodosporidium toruloides broth culture after high pressure homogenization cell disruption: strategies, methodologies, and yields. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Zhang L, Liao W, Huang Y, Wen Y, Chu Y, Zhao C. Global seaweed farming and processing in the past 20 years. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractSeaweed has emerged as one of the most promising resources due to its remarkable adaptability, short development period, and resource sustainability. It is an effective breakthrough to alleviate future resource crises. Algal resources have reached a high stage of growth in the past years due to the increased output and demand for seaweed worldwide. Several aspects global seaweed farming production and processing over the last 20 years are reviewed, such as the latest situation and approaches of seaweed farming. Research progress and production trend of various seaweed application are discussed. Besides, the challenges faced by seaweed farming and processing are also analyzed, and the related countermeasures are proposed, which can provide advice for seaweed farming and processing. The primary products, extraction and application, or waste utilization of seaweed would bring greater benefits with the continuous development and improvement of applications in various fields.
Graphical Abstract
Collapse
|
4
|
Gasparetto H, de Castilhos F, Paula Gonçalves Salau N. Recent advances in green soybean oil extraction: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Zhou J, Wang M, Saraiva JA, Martins AP, Pinto CA, Prieto MA, Simal-Gandara J, Cao H, Xiao J, Barba FJ. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem 2022; 384:132236. [PMID: 35240572 DOI: 10.1016/j.foodchem.2022.132236] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
Microalgae, as a photosynthetic autotrophic organism, contain a variety of bioactive compounds, including lipids, proteins, polysaccharides, which have been applied in food, medicine, and fuel industries, among others. Microalgae are considered a good source of marine lipids due to their high content in unsaturated fatty acid (UFA) and can be used as a supplement/replacement for fish-based oil. The high concentration of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) in microalgae lipids, results in important physiological functions, such as antibacterial, anti-inflammatory, and immune regulation, being also a prerequisite for its development and application. In this paper, a variety of approaches for the extraction of lipids from microalgae were reviewed, including classical and innovative approaches, being the advantages and disadvantages of these methods emphasized. Further, the effects of microalgae lipids as high value bioactive compounds in human health and their use for several applications are dealt with, aiming using green(er) and effective methods to extract lipids from microalgae, as well as develop and extend their application potential.
Collapse
Affiliation(s)
- Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
6
|
Arabian D. Optimization of cell wall disruption and lipid extraction methods by combining different solvents from wet
Chlorella vulgaris. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daryush Arabian
- University Institute of Applied Science Malek Ashtar University of Technology Isfahan Iran
| |
Collapse
|
7
|
Russell C, Rodriguez C, Yaseen M. Microalgae for lipid production: Cultivation, extraction & detection. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Babich O, Dolganyuk V, Andreeva A, Katserov D, Matskova L, Ulrikh E, Ivanova S, Michaud P, Sukhikh S. Isolation of Valuable Biological Substances from Microalgae Culture. Foods 2022; 11:foods11111654. [PMID: 35681404 PMCID: PMC9180597 DOI: 10.3390/foods11111654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Methods for purifying, detecting, and characterizing protein concentrate, carbohydrates, lipids, and neutral fats from the microalgae were developed as a result of research. Microalgae were collected from natural sources (water, sand, soil of the Kaliningrad region, Russia). Microalgae were identified based on morphology and polymerase chain reaction as Chlorella vulgaris Beijer, Arthrospira platensis Gomont, Arthrospira platensis (Nordst.) Geitl., and Dunaliella salina Teod. The protein content in all microalgae samples was determined using a spectrophotometer. The extracts were dried by spray freeze drying. Pressure acid hydrolysis with 1% sulfuric acid was determined to be the most effective method for extracting carbohydrates from microalgae biomass samples. The highest yield of carbohydrates (more than 56%) was obtained from A. platensis samples. The addition of carbohydrates to the cultivation medium increased the accumulation of fatty acids in microalgae, especially in Chlorella. When carbohydrates were introduced to nutrient media, neutral lipids increased by 10.9%, triacylglycerides by 10.9%, fatty acids by 13.9%, polar lipids by 3.1%, unsaponifiable substances by 13.1%, chlorophyllides by 12.1%, other impurities by 8.9% on average for all microalgae. It was demonstrated that on average the content of myristic acid increased by 10.8%, palmitic acid by 10.4%, oleic acid by 10.0%, stearic acid by 10.1%, and linoleic acid by 5.7% in all microalgae samples with the addition of carbohydrates to nutrient media. It was established that microalgae samples contained valuable components (proteins, carbohydrates, lipids, fatty acids, minerals). Thereby the study of the composition of lipids and fatty acids in microalgae, as well as the influence of carbohydrates in the nutrient medium on lipid accumulation, is a promising direction for scientific research in the fields of physiology, biochemistry, biophysics, genetics, space biology and feed additive production.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| | - Anna Andreeva
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Dmitriy Katserov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Liudmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Elena Ulrikh
- Institute of Agroengineering and Food System, Kaliningrad State Technical University, Soviet Avenue 1, Kaliningrad 236022, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-47-340-7425 (P.M.)
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-47-340-7425 (P.M.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| |
Collapse
|
9
|
Arunachalam Sivagurulingam AP, Sivanandi P, Pandian S. Isolation, mass cultivation, and biodiesel production potential of marine microalgae identified from Bay of Bengal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6646-6655. [PMID: 34453254 DOI: 10.1007/s11356-021-16163-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, marine microalgae were isolated from the Bay of Bengal, and their biodiesel production potential was investigated. Five different strains of microalgae were identified, viz. Nannochloropsis salina (N. salina), Dunaliella salina (D. salina), Chaetoceros calcitrans (C. calcitrans), Tetraselmis chuii (T. chuii), and Euglena sanguinea (E. sanguinea). Further, these stains were mass cultivated in a 250-L bioreactor to assess their biomass production ability. At the end of the exponential phase, algal biomass was harvested for lipid extraction. The fatty acid profile and physico-chemical properties of the lipids were analyzed. It was observed that a maximum of 27.67wt% of lipid was obtained for N. salina followed by D. salina (22.58 wt%), E. sanguinea (21.88 wt%), T. chuii (20.15 wt%), and C. calcitrans (16.25 wt%). Subsequently, the extracted lipids were subjected to single-step esterification and transesterification process to produce biodiesel by using an acid catalyst. The different parameters influencing the reaction such as catalyst concentration, temperature, methanol to lipid molar ratio, and time were investigated. A maximum biodiesel yield of 97, 94, 96, 92, and 92 wt% were obtained for N. salina, D. salina, C. calcitrans, T. chuii, and E. sanguinea, respectively, at the favorable reaction conditions. The fuel properties of biodiesel were analyzed as per the standard protocol and compared with ASTM D6751 standard.
Collapse
Affiliation(s)
| | - Periyasamy Sivanandi
- Department of Mechanical Engineering, Government College of Technology, Coimbatore, 641013, India
| | - Sivakumar Pandian
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| |
Collapse
|
10
|
Comparison of Ex-Situ and In-Situ Transesterification for the Production of Microbial Biodiesel. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.11044.733-743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial biodiesel is converted from microbial lipids via transesterification process. Most microbial biodiesel studies are focusing on the use of microalgal lipids as feedstock. Apart from using microalgae for lipid biosynthesis, lipids can also be extracted from other oleaginous microorganisms like fungi and yeast. However, there are gaps in the studies of lipid production from filamentous fungi, especially in-situ transesterification process. The aim of this project is to compare in-situ with the ex-situ transesterification of fungal biomass from Aspergillus oryzae. In ex-situ transesterification, two methods of lipid extraction, the Soxhlet extraction and the Bligh and Dyer extraction, were performed. For in-situ transesterification, two methods using different catalysts were investigated. Base-catalyzed in-situ transesterification of fungal biomass resulted on the highest Fatty Acid Methyl Esters (FAME) yield. The base-catalyzed in-situ transesterification was further optimized via Central Composite Design (CCD) of Response Surface Methodology (RSM). The parameters investigated were the catalyst loading, methanol to biomass ratio and reaction time. The optimization showed that the highest FAME yield was at 25.1% (w/w) with 10 minutes reaction time, 5% catalyst and 360:1 of the ratio of the methanol to biomass. Based on Analysis of Variance (ANOVA), the model was found to be significant according to the value of “Prob >F” of 0.0028. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
11
|
Ilić-Pajić J, Radović I, Grozdanić N, Stajić-Trošić J, Kijevčanin M. Volumetric and thermodynamic properties of binary mixtures of p-cymene with α-pinene, limonene and citral at atmospheric pressure and temperatures up to 323.15 K. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Cardoso C, Matos J, Gomes‐Bispo A, Afonso C, Motta C, Castanheira I, Prates JAM, Bandarra NM. Antioxidant and anti‐inflammatory activities of ethyl acetate extracts of chub mackerel (
Scomber colias
): a thorough seasonal evaluation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Cardoso
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Avenida Alfredo Magalhães Ramalho, 6 Algés 1495‐165 Portugal
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto Rua dos Bragas 289 Porto 4050‐123 Portugal
| | - Joana Matos
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Avenida Alfredo Magalhães Ramalho, 6 Algés 1495‐165 Portugal
- Faculdade de Ciências da Universidade de Lisboa Campo Grande, 16 Lisboa 1749‐016 Portugal
| | - Ana Gomes‐Bispo
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Avenida Alfredo Magalhães Ramalho, 6 Algés 1495‐165 Portugal
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto Rua dos Bragas 289 Porto 4050‐123 Portugal
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Avenida Alfredo Magalhães Ramalho, 6 Algés 1495‐165 Portugal
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto Rua dos Bragas 289 Porto 4050‐123 Portugal
| | - Carla Motta
- Instituto Nacional de Saúde Doutor Ricardo Jorge Av. Padre Cruz Lisbon 1600‐560 Portugal
| | - Isabel Castanheira
- Instituto Nacional de Saúde Doutor Ricardo Jorge Av. Padre Cruz Lisbon 1600‐560 Portugal
| | - José A. M. Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA) Faculdade de Medicina Veterinária Universidade de Lisboa Lisbon 1300‐477 Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Avenida Alfredo Magalhães Ramalho, 6 Algés 1495‐165 Portugal
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto Rua dos Bragas 289 Porto 4050‐123 Portugal
| |
Collapse
|
13
|
Heredia V, Pruvost J, Gonçalves O, Drouin D, Marchal L. Lipid recovery from Nannochloropsis gaditana using the wet pathway: Investigation of the operating parameters of bead milling and centrifugal extraction. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Green ultra-high pressure extraction of bioactive compounds from Haematococcus pluvialis and Porphyridium cruentum microalgae. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102532] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
A Review of the Use of Eutectic Solvents, Terpenes and Terpenoids in Liquid–liquid Extraction Processes. Processes (Basel) 2020. [DOI: 10.3390/pr8101220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diverse and abundant applications of the eutectic solvents have appeared in the last years. Their promising tunable properties, eco-friendly character and the possibility of being prepared from numerous compounds have led to the publication of numerous papers addressing their use in different areas. Terpenes and terpenoids have been employed in the formulation of eutectic solvents, though they also have been applied as solvents in extraction processes. For their hydrophobic nature, renewable character, low environmental impact, cost and being non-hazardous, they have also been proposed as possible substitutes of conventional solvents in the separation of organic compounds from aqueous streams, similarly to hydrophobic eutectic solvents. The present work reviews the application of eutectic solvents in liquid–liquid extraction and terpenes and terpenoids in extraction processes. It has been made a research in the current state-of-the-art in these fields, describing the proposed applications of the solvents. It has been highlighted the scale-up feasibility, solvent regeneration and reuse procedures and the comparison of the performance of eutectic solvents, terpenes and terpenoids in extraction with conventional organic solvents or ionic liquids. Ultimately, it has been also discussed the employ of predictive methods in extraction, the reliability of thermodynamic models in correlation of liquid–liquid equilibria and simulation of liquid–liquid extraction processes.
Collapse
|
16
|
Cheng J, Guo H, Qiu Y, Zhang Z, Mao Y, Qian L, Yang W, Park JY. Switchable solvent N, N, N', N'-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production. BIORESOURCE TECHNOLOGY 2020; 312:123607. [PMID: 32504947 DOI: 10.1016/j.biortech.2020.123607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Switchable solvent N, N, N', N'-tetraethyl-1,3-propanediamine (TEPDA) was proposed to extract lipids from wet Nannochloropsis oceanica with a 5% higher extraction efficiency than chloroform-methanol. It was found that TEPDA acted mainly as an organic solvent to soften and dissolve lipids, while a small amount of TEPDA was dissociated into tertiary amine ion, i.e.,(C2H5)2N-(CH2)3-NH+(C2H5)2. This cation acted as a surfactant to promote cell disruption and lipid separation. With moisture increasing from 0 to 84 wt%, more TEPDA was dissociated into cationic surfactant to induce local rearrangement of phospholipid bilayers in cell membranes through electrostatic interaction, resulting in the fractal dimension of disrupted cells increased from 1.49 to 1.66. Accordingly, the yield of fatty acid methyl ester (FAME) through transesterification of lipids extracted with TEPDA increased by 9%, while FAME yield from lipids extracted with chloroform and n-hexane decreased by 41% and 65%, respectively.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Hao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yi Qiu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Mao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ji-Yeon Park
- Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Daejeon 34129, Republic of Korea
| |
Collapse
|
17
|
Boonyubol S, Kodama S, Sekiguchi H. Effect of Alumina Particles on Simultaneous Lipid Extraction and Biodiesel Production from Microalgae under Ultrasonic Irradiation. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.19we231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sasipa Boonyubol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| | - Satoshi Kodama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| | - Hidetoshi Sekiguchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| |
Collapse
|
18
|
da Silva Nonato N, Nottar Escobar EL, Kochepka DM, Bianchini Derner R, Montes D’Oca MG, Corazza ML, Pereira Ramos L. Extraction of Muriella decolor lipids using conventional and pressurized solvents and characterization of their fatty acid profile for biodiesel applications. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Trivedi J, Atray N, Agrawal D. Evaluating Cell Disruption Strategies for Aqueous Lipid Extraction from Oleaginous
Scenedesmus obliquus
at High Solid Loadings. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jayati Trivedi
- Biofuels DivisionCSIR‐ Indian Institute of Petroleum Mohkampur Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐HRDC Campus Ghaziabad 201002 India
| | - Neeraj Atray
- Biofuels DivisionCSIR‐ Indian Institute of Petroleum Mohkampur Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐HRDC Campus Ghaziabad 201002 India
| | - Deepti Agrawal
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐HRDC Campus Ghaziabad 201002 India
- Materials resource efficiency DivisionCSIR‐ Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| |
Collapse
|
20
|
Jiménez Callejón MJ, Robles Medina A, Macías Sánchez MD, Esteban Cerdán L, González Moreno PA, Navarro López E, Hita Peña E, Grima EM. Obtaining highly pure EPA-rich lipids from dry and wet Nannochloropsis gaditana microalgal biomass using ethanol, hexane and acetone. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Abdellah M, Scholes C, Liu L, Kentish S. Efficient degumming of crude canola oil using ultrafiltration membranes and bio-derived solvents. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abdellah M, Liu L, Scholes C, Freeman B, Kentish S. Organic solvent nanofiltration of binary vegetable oil/terpene mixtures: Experiments and modelling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Abdellah MH, Pérez-Manríquez L, Puspasari T, Scholes CA, Kentish SE, Peinemann KV. A catechin/cellulose composite membrane for organic solvent nanofiltration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Transport of terpenes through composite PDMS/PAN solvent resistant nanofiltration membranes. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Lian J, Wijffels RH, Smidt H, Sipkema D. The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol 2018; 11:806-818. [PMID: 29978601 PMCID: PMC6116740 DOI: 10.1111/1751-7915.13296] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Microbes are ubiquitously distributed, and they are also present in algae production systems. The algal microbiome is a pivotal part of the alga holobiont and has a key role in modulating algal populations in nature. However, there is a lack of knowledge on the role of bacteria in artificial systems ranging from laboratory flasks to industrial ponds. Coexisting microorganisms, and predominantly bacteria, are often regarded as contaminants in algal research, but recent studies manifested that many algal symbionts not only promote algal growth but also offer advantages in downstream processing. Because of the high expectations for microalgae in a bio‐based economy, better understanding of benefits and risks of algal–microbial associations is important for the algae industry. Reducing production cost may be through applying specific bacteria to enhance algae growth at large scale as well as through preventing the growth of a broad spectrum of algal pathogens. In this review, we highlight the latest studies of algae–microbial interactions and their underlying mechanisms, discuss advantages of large‐scale algal–bacterial cocultivation and extend such knowledge to a broad range of biotechnological applications.
Collapse
Affiliation(s)
- Jie Lian
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering Group, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
26
|
An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms. Molecules 2018; 23:molecules23071562. [PMID: 29958398 PMCID: PMC6100488 DOI: 10.3390/molecules23071562] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Microbial oils, obtained from oleaginous microorganisms are an emerging source of commercially valuable chemicals ranging from pharmaceuticals to the petroleum industry. In petroleum biorefineries, the microbial biomass has become a sustainable source of renewable biofuels. Biodiesel is mainly produced from oils obtained from oleaginous microorganisms involving various upstream and downstream processes, such as cultivation, harvesting, lipid extraction, and transesterification. Among them, lipid extraction is a crucial step for the process and it represents an important bottleneck for the commercial scale production of biodiesel. Lipids are synthesized in the cellular compartment of oleaginous microorganisms in the form of lipid droplets, so it is necessary to disrupt the cells prior to lipid extraction in order to improve the extraction yields. Various mechanical, chemical and physicochemical pretreatment methods are employed to disintegrate the cellular membrane of oleaginous microorganisms. The objective of the present review article is to evaluate the various pretreatment methods for efficient lipid extraction from the oleaginous cellular biomass available to date, as well as to discuss their advantages and disadvantages, including their effect on the lipid yield. The discussed mechanical pretreatment methods are oil expeller, bead milling, ultrasonication, microwave, high-speed and high-pressure homogenizer, laser, autoclaving, pulsed electric field, and non-mechanical methods, such as enzymatic treatment, including various emerging cell disruption techniques.
Collapse
|
27
|
Yellapu SK, Kaur R, Kumar LR, Tiwari B, Zhang X, Tyagi RD. Recent developments of downstream processing for microbial lipids and conversion to biodiesel. BIORESOURCE TECHNOLOGY 2018; 256:515-528. [PMID: 29472122 DOI: 10.1016/j.biortech.2018.01.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
With increasing global population and depleting resources, there is an apparent demand for radical unprecedented innovation to satisfy the basal needs of lives. Hence, non-conventional renewable energy resources like biodiesel have been worked out in past few decades. Biofuel (e.g. Biodiesel) serves to be the most sustainable answer to solve "food vs. fuel crisis". In biorefinery process, lipid extraction from oleaginous microbial lipids is an integral part as it facilitates the release of fatty acids. Direct lipid extraction from wet cell-biomass is favorable in comparison to dry-cell biomass because it eliminates the application of expensive dehydration. However, this process is not commercialized yet, instead, it requires intensive research and development in order to establish robust approaches for lipid extraction that can be practically applied on an industrial scale. This review aims for the critical presentation on cell disruption, lipid recovery and purification to support extraction from wet cell-biomass for an efficient transesterification.
Collapse
Affiliation(s)
- Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Lalit R Kumar
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhagyashree Tiwari
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Rajeshwar D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
28
|
de Moura RR, Etges BJ, dos Santos EO, Martins TG, Roselet F, Abreu PC, Primel EG, D'Oca MGM. Microwave-Assisted Extraction of Lipids from Wet Microalgae Paste: A Quick and Efficient Method. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Renata R. de Moura
- School of Food and Chemistry, Kolbe Laboratory for Organic Synthesis, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS 96201-900 Brazil
| | - Bianca J. Etges
- School of Food and Chemistry, Kolbe Laboratory for Organic Synthesis, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS 96201-900 Brazil
| | - Elisane O. dos Santos
- School of Food and Chemistry, Kolbe Laboratory for Organic Synthesis, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS 96201-900 Brazil
| | - Tatiana G. Martins
- School of Food and Chemistry, Kolbe Laboratory for Organic Synthesis, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS 96201-900 Brazil
| | - Fabio Roselet
- Institute of Oceanography, Laboratory of Phytoplacton Ecology and Marine Microorganisms, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS Brazil
| | - Paulo C. Abreu
- Institute of Oceanography, Laboratory of Phytoplacton Ecology and Marine Microorganisms, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS Brazil
| | - Ednei G. Primel
- School of Food and Chemistry, Kolbe Laboratory for Organic Synthesis, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS 96201-900 Brazil
| | - Marcelo G. M. D'Oca
- School of Food and Chemistry, Kolbe Laboratory for Organic Synthesis, Federal University of Rio Grande; Av. Itália km 08 Rio Grande, RS 96201-900 Brazil
| |
Collapse
|
29
|
Xue Z, Wan F, Yu W, Liu J, Zhang Z, Kou X. Edible Oil Production From Microalgae: A Review. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700428] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Fang Wan
- School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Wancong Yu
- Tianjin Academy of Agricultural Sciences; 300381 Tianjin China
| | - Jing Liu
- School of Chemistry and Chemical Engineering; Qinghai Nationalities University; 810007 Qinghai China
| | - Zhijun Zhang
- Tianjin Academy of Agricultural Sciences; 300381 Tianjin China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| |
Collapse
|
30
|
Du Y, Schuur B, Kersten SR, Brilman D(W. Multistage wet lipid extraction from fresh water stressed Neochloris oleoabundans slurry – Experiments and modelling. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Bian X, Jin W, Gu Q, Zhou X, Xi Y, Tu R, Han SF, Xie GJ, Gao SH, Wang Q. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus. World J Microbiol Biotechnol 2018; 34:39. [PMID: 29460187 DOI: 10.1007/s11274-018-2421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Subcritical co-solvents of n-hexane/isopropanol were primarily utilized to extract lipid from wet microalgal pastes of Scenedesmus obliquus. The effects of key operational parameters were investigated, and the optimal parameters were obtained: solvent ratio of n-hexane to isopropanol was 3:2 (V:V), phase ratio of co-solvents to microalgal biomass was 35:1 (mL:g), reactor stirring speed was 900 rpm, extraction time was 60 min. Additional pretreatment with acid, ultrasonic and microwave as well as enhanced subcritical pressure/heating treatments were also applied to further study their effects on lipid extraction. The results showed that the lipid recovery rate with acid pretreatment was 8.6 and 6.2% higher than ultrasonic and microwave pretreatment; the optimum enhanced subcritical condition was 55 °C with atmospheric pressure. Under optimal operating conditions, the lipid and FAME yield were 13.5 and 7.2%, which was 82.6 and 135.1% higher than the traditional method. The results indicated that the subcritical n-hexane/isopropanol extraction process had promising application potential.
Collapse
Affiliation(s)
- Xiaoyu Bian
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qiong Gu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yuhe Xi
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150001, China
| | - Shu-Hong Gao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy & Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
32
|
Chua ET, Schenk PM. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. BIORESOURCE TECHNOLOGY 2017. [PMID: 28624245 DOI: 10.1016/j.biortech.2017.05.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microalgae have been studied as biofactories for almost four decades. Yet, even until today, many aspects of microalgae farming and processing are still considered exploratory because of the uniqueness of each microalgal species. Thus, it is important to develop the entire process of microalgae farming: from culturing to harvesting, and down to extracting the desired high-value products. Based on its rapid growth and high oil productivities, Nannochloropsis sp. is of particular interest to many industries for the production of high-value oil containing omega-3 fatty acids, specifically eicosapentaenoic acid (EPA), but also several other products. This review compares the various techniques for induction, harvesting, and extraction of EPA-rich oil and high-value protein explored by academia and industry to develop a multi-product Nannochloropsis biorefinery. Knowledge gaps and opportunities are discussed for culturing and inducing fatty acid biosynthesis, biomass harvesting, and extracting EPA-rich oil and high-value protein from the biomass of Nannochloropsis sp.
Collapse
Affiliation(s)
- Elvis T Chua
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
33
|
Wu C, Xiao Y, Lin W, Zhu J, De la Hoz Siegler H, Zong M, Rong J. Surfactants assist in lipid extraction from wet Nannochloropsis sp. BIORESOURCE TECHNOLOGY 2017; 243:793-799. [PMID: 28715696 DOI: 10.1016/j.biortech.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
An efficient approach involving surfactant treatment, or the modification and utilization of surfactants that naturally occur in algae (algal-based surfactants), was developed to assist in the extraction of lipids from wet algae. Surfactants were found to be able to completely replace polar organic solvents in the extraction process. The highest yield of algal lipids extracted by hexane and algal-based surfactants was 78.8%, followed by 78.2% for hexane and oligomeric surfactant extraction, whereas the lipid yield extracted by hexane and ethanol was only 60.5%. In addition, the saponifiable lipids extracted by exploiting algal-based surfactants and hexane, or adding oligomeric surfactant and hexane, accounted for 78.6% and 75.4% of total algal lipids, respectively, which was more than 10% higher than the lipids extracted by hexane and ethanol. This work presents a method to extract lipids from algae using only nonpolar organic solvents, while obtaining high lipid yields and high selectivity to saponifiables.
Collapse
Affiliation(s)
- Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada; Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Ye Xiao
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| | - Weiguo Lin
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Junying Zhu
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| | - Mingsheng Zong
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Junfeng Rong
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China.
| |
Collapse
|
34
|
Affiliation(s)
- Maulidan Firdaus
- Department of Chemistry; Sebelas Maret University; Jl. Ir. Sutami 36A Surakarta 57126 Indonesia
| |
Collapse
|
35
|
Balduyck L, Stock T, Bijttebier S, Bruneel C, Jacobs G, Voorspoels S, Muylaert K, Foubert I. Integrity of the microalgal cell plays a major role in the lipolytic stability during wet storage. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Du Y, Schuur B, Brilman DWF. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent. Ind Eng Chem Res 2017; 56:8073-8080. [PMID: 28781427 PMCID: PMC5526653 DOI: 10.1021/acs.iecr.7b01032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/16/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
![]()
The extraction yield of lipids from nonbroken Neochloris
oleoabundans was maximized by using multiple extraction
stages and using stressed algae. Experimental parameters that affect
the extraction were investigated. The study showed that with wet algae
(at least) 18 h extraction time was required for maximum yield at
room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh
water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was
achieved, which could be improved to 61.3 wt % for FW stressed algae
after four extractions, illustrating that a combination of stressing
the algae and applying the solvent N-ethylbutylamine in multiple stages
of extraction results in almost 5 times higher yield and is very promising
for further development of energy-efficient lipid extraction technology
targeting nonbroken wet microalgae.
Collapse
Affiliation(s)
- Ying Du
- Sustainable Process Technology Group (SPT), Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Boelo Schuur
- Sustainable Process Technology Group (SPT), Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Derk W F Brilman
- Sustainable Process Technology Group (SPT), Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
37
|
Ansari FA, Gupta SK, Shriwastav A, Guldhe A, Rawat I, Bux F. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15299-15307. [PMID: 28502047 DOI: 10.1007/s11356-017-9040-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.
Collapse
Affiliation(s)
- Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sanjay Kumar Gupta
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Amritanshu Shriwastav
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhishek Guldhe
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
38
|
Rationale behind the near-ideal catalysis of Candida antarctica lipase A (CAL-A) for highly concentrating ω-3 polyunsaturated fatty acids into monoacylglycerols. Food Chem 2017; 219:230-239. [DOI: 10.1016/j.foodchem.2016.09.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/27/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023]
|
39
|
Wu J, Alam MA, Pan Y, Huang D, Wang Z, Wang T. Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Wet lipid extraction from the microalga Nannochloropsis sp.: Disruption, physiological effects and solvent screening. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
|
42
|
Carotenoids from microalgae: A review of recent developments. Biotechnol Adv 2016; 34:1396-1412. [DOI: 10.1016/j.biotechadv.2016.10.005] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
|
43
|
Yellapu SK, Bezawada J, Kaur R, Kuttiraja M, Tyagi RD. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach. BIORESOURCE TECHNOLOGY 2016; 218:667-673. [PMID: 27416517 DOI: 10.1016/j.biortech.2016.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery.
Collapse
Affiliation(s)
- Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Jyothi Bezawada
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | | | - Rajeshwar D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
44
|
Supaporn P, Yeom SH. Optimization of a two-step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0188-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Balduyck L, Bijttebier S, Bruneel C, Jacobs G, Voorspoels S, Van Durme J, Muylaert K, Foubert I. Lipolysis in T-Isochrysis lutea during wet storage at different temperatures. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Bio-Based Solvents for Green Extraction of Lipids from Oleaginous Yeast Biomass for Sustainable Aviation Biofuel. Molecules 2016; 21:molecules21020196. [PMID: 26861274 PMCID: PMC6274296 DOI: 10.3390/molecules21020196] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 11/17/2022] Open
Abstract
Lipid-based oleaginous microorganisms are potential candidates and resources for the sustainable production of biofuels. This study was designed to evaluate the performance of several alternative bio-based solvents for extracting lipids from yeasts. We used experimental design and simulation with Hansen solubility simulations and the conductor-like screening model for realistic solvation (COSMO-RS) to simulate the solubilization of lipids in each of these solvents. Lipid extracts were analyzed by high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes and gas chromatography coupled with a flame ionization detector (GC/FID) to obtain fatty acid profiles. Our aim was to correlate simulation with experimentation for extraction and solvation of lipids with bio-based solvents in order to make a preliminary evaluation for the replacement of hexane to extract lipids from microorganisms. Differences between theory and practice were noted for several solvents, such as CPME, MeTHF and ethyl acetate, which appeared to be good candidates to replace hexane.
Collapse
|
47
|
Li Z, Smith KH, Stevens GW. The use of environmentally sustainable bio-derived solvents in solvent extraction applications—A review. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.07.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
|
49
|
Sara M, Brar SK, Blais JF. Comparative study between microwave and ultrasonication aided in situ transesterification of microbial lipids. RSC Adv 2016. [DOI: 10.1039/c6ra10379k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent trends have focused on the development of a rapid method to convert microbial lipids to biodiesel.
Collapse
Affiliation(s)
- Magdouli Sara
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement)
- Université du Québec
- Canada
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement)
- Université du Québec
- Canada
| | - Jean François Blais
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement)
- Université du Québec
- Canada
| |
Collapse
|
50
|
Opportunities for switchable solvents for lipid extraction from wet algal biomass: An energy evaluation. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|