1
|
Sousa S, Carvalho AP, Gomes AM. Factors impacting the microbial production of eicosapentaenoic acid. Appl Microbiol Biotechnol 2024; 108:368. [PMID: 38860989 PMCID: PMC11166839 DOI: 10.1007/s00253-024-13209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
The increasing applications for eicosapentaenoic acid (EPA) and the potential shortfall in supply due to sustainability and contamination issues related with its conventional sources (i.e., fish oils; seafood) led to an extensive search for alternative and sustainable sources, as well as production processes. The present mini-review covers all the steps involved in the production of EPA from microorganisms, with a deeper focus on microalgae. From production systems to downstream processing, the most important achievements within each area are briefly highlighted. Comparative tables of methodologies are also provided, as well as additional references of recent reviews, so that readers may deepen their knowledge in the different issues addressed. KEY POINTS: • Microorganisms are more sustainable alternative sources of EPA than fish. • Due to the costly separation from DHA, species that produce only EPA are preferable. • EPA production can be optimised using non-genetic and genetic tailoring engineering.
Collapse
Affiliation(s)
- Sérgio Sousa
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Ana M Gomes
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
2
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
3
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
4
|
Bolaños-Martínez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar Drugs 2022; 20:md20070434. [PMID: 35877728 PMCID: PMC9318342 DOI: 10.3390/md20070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
During the last two decades, microalgae have attracted increasing interest, both commercially and scientifically. Commercial potential involves utilizing valuable natural compounds, including carotenoids, polysaccharides, and polyunsaturated fatty acids, which are widely applicable in food, biofuel, and pharmaceutical industries. Conversely, scientific potential focuses on bioreactors for producing recombinant proteins and developing viable technologies to significantly increase the yield and harvest periods. Here, viral-based vectors and transient expression strategies have significantly contributed to improving plant biotechnology. We present an updated outlook covering microalgal biotechnology for pharmaceutical application, transformation techniques for generating recombinant proteins, and genetic engineering tactics for viral-based vector construction. Challenges in industrial application are also discussed.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesan Mahendran
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8358
| |
Collapse
|
5
|
Michelon W, Matthiensen A, Viancelli A, Fongaro G, Gressler V, Soares HM. Removal of veterinary antibiotics in swine wastewater using microalgae-based process. ENVIRONMENTAL RESEARCH 2022; 207:112192. [PMID: 34634313 DOI: 10.1016/j.envres.2021.112192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Phycoremediation of swine wastewater is an attractive treatment to remove contaminants and simultaneously produce valuable feedstock biomass. However, there is a lack of information about the application of phycoremediation on veterinary antibiotic removal. Thus, this research investigated the degradation of tetracycline, oxytetracycline, chlortetracycline and doxycycline in swine wastewater treated with phycoremediation. The tetracyclines degradation kinetics was adjusted to the pseudo-first-order kinetics model, with kinetic constant k1 in the following: 0.36 > 0.27>0.19 > 0.18 (d-1) for tetracycline, doxycycline, oxytetracycline and chlortetracycline, respectively. The maximum concentration of microalgae biomass (342.4 ± 20.3 mg L-1) was obtained after 11 days of cultivation, when tetracycline was completely removed. Chlortetracycline concentration decreased, generating iso-chlortetracycline and 4-epi-iso-chlortetracycline. Microalgae biomass harvested after antibiotics removal presented a carbohydrate-rich content of 52.7 ± 8.1, 50.1 ± 3.3, 51.4 ± 5.4 and 57.4 ± 10.4 (%) when cultured with tetracycline, oxytetracycline, chlortetracycline and doxycycline, respectively, while the control culture without antibiotics presented a carbohydrate content of 40 ± 6.5%. These results indicate that could be a valuable source for bioenergy conversion.
Collapse
Affiliation(s)
- William Michelon
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Florianópolis, SC, 88040-700, Brazil.
| | | | - Aline Viancelli
- Universidade do Contestado, Concórdia, SC, 89711-330, Brazil.
| | - Gislaine Fongaro
- Federal University of Santa Catarina, Department of Microbiology, Immunology and Parasitology, Florianópolis, SC, 88040-700, Brazil.
| | | | - Hugo Moreira Soares
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Florianópolis, SC, 88040-700, Brazil.
| |
Collapse
|
6
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
7
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
8
|
Booth M, Spicer A, Kiparissides A. Shedding light on phototrophic biomass production of Chlorella variabilis: The importance of dissolved CO2, light intensity and duty cycle. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Arias DM, Ortíz-Sánchez E, Okoye PU, Rodríguez-Rangel H, Balbuena Ortega A, Longoria A, Domínguez-Espíndola R, Sebastian PJ. A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148636. [PMID: 34323759 DOI: 10.1016/j.scitotenv.2021.148636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial biomass has constituted a crucial third and fourth-generation biofuel material, with great potential to synthesize a wide range of metabolites, mainly carbohydrates. Lately, carbohydrate-based biofuels from cyanobacteria, such as bioethanol, biohydrogen, and biobutanol, have attracted attention as a sustainable alternative to petroleum-based products. Cyanobacteria can perform a simple process of saccharification, and extracted carbohydrates can be converted into biofuels with two alternatives; the first one consists of a fermentative process based on bacteria or yeasts, while the second alternative consists of an internal metabolic process of their own in intracellular carbohydrate content, either by the natural or genetic engineered process. This study reviewed carbohydrate-enriched cyanobacterial biomass as feedstock for biofuels. Detailed insights on technical strategies and limitations of cultivation, polysaccharide accumulation strategies for further fermentation process were provided. Advances and challenges in bioethanol, biohydrogen, and biobutanol production by cyanobacteria synthesis and an independent fermentative process are presented. Critical outlook on life-cycle assessment and techno-economical aspects for large-scale application of these technologies were discussed.
Collapse
Affiliation(s)
- Dulce María Arias
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Edwin Ortíz-Sánchez
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, Jiutepec, Morelos CP, 62550, Mexico
| | - Patrick U Okoye
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico.
| | - Hector Rodríguez-Rangel
- Division de Estudios de Posgrado e Investigación, Tecnológico Nacional de México Campus Culiacán, Juan de Dios Batiz 310 pte. Col Guadalupe, CP, 80220 Culiacàn, Mexico
| | - A Balbuena Ortega
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Adriana Longoria
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Ruth Domínguez-Espíndola
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| |
Collapse
|
10
|
Prospects for viruses infecting eukaryotic microalgae in biotechnology. Biotechnol Adv 2021; 54:107790. [PMID: 34182051 DOI: 10.1016/j.biotechadv.2021.107790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
Besides being considered pathogens, viruses are important drivers of evolution and they can shape large ecological and biogeochemical processes, by influencing host fitness, population dynamics, and community structures. Moreover, they are simple systems that can be used and manipulated to be beneficial and useful for biotechnological applications. In this context, microalgae biotechnology is a growing field of research, which investigated the usage of photosynthetic microorganisms for the sustainable production of food, fuel, chemical, and pharmaceutical sectors. Viruses infecting microalgae have become important subject of ecological studies related to marine and aquatic environments only four decades ago when virus-like-particles associated with bloom-forming algae were discovered. These first findings have opened new questions on evolution and identity. To date, 63 viruses that infect eukaryotic microalgae have been isolated and cultured. In this short review we briefly summarize what is known about viruses infecting eukaryotic microalgae, and how acknowledging their importance can shape future research focussed not only on marine ecology and evolutionary biology but also on biotechnological applications related to microalgae cell factories.
Collapse
|
11
|
Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. SUSTAINABILITY 2020. [DOI: 10.3390/su12239980] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgal biomass is currently considered as a sustainable and renewable feedstock for biofuel production (biohydrogen, biomethane, biodiesel) characterized by lower emissions of hazardous air pollutants than fossil fuels. Photobioreactors for microalgae growth can be exploited using many industrial and domestic wastes. It allows locating the commercial microalgal systems in areas that cannot be employed for agricultural purposes, i.e., near heating or wastewater treatment plants and other industrial facilities producing carbon dioxide and organic and nutrient compounds. Despite their high potential, the large-scale algal biomass production technologies are not popular because the systems for biomass production, separation, drainage, and conversion into energy carriers are difficult to explicitly assess and balance, considering the ecological and economical concerns. Most of the studies presented in the literature have been carried out on a small, laboratory scale. This significantly limits the possibility of obtaining reliable data for a comprehensive assessment of the efficiency of such solutions. Therefore, there is a need to verify the results in pilot-scale and the full technical-scale studies. This study summarizes the strengths and weaknesses of microalgal biomass production technologies for bioenergetic applications.
Collapse
|
12
|
Nitsos C, Filali R, Taidi B, Lemaire J. Current and novel approaches to downstream processing of microalgae: A review. Biotechnol Adv 2020; 45:107650. [PMID: 33091484 DOI: 10.1016/j.biotechadv.2020.107650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Biotechnological application of microalgae cultures at large scale has significant potential in the various fields of biofuels, food and feed, cosmetic, pharmaceutic, environmental remediation and water treatment. Despite this great potential application, industrialisation of microalgae culture and valorisation is still faced with serious remaining challenges in culture scale-up, harvesting and extraction of target molecules. This review presents a general summary of current techniques for harvesting and extraction of biomolecules from microalgae, their relative merits and potential for industrial application. The cell wall composition and its impact on microalgae cell disruption is discussed. Additionally, more recent progress and promising experimental methods and studies are summarised that would allow the reader to further investigate the state of the art. A final survey of energetic assessments of the different techniques is also made. Bead milling and high-pressure homogenisation seem to give clear advantages in terms of target high value compounds extraction from microalgae, with enzyme hydrolysis as a promising emerging technique. Future industrialisation of microalgae for high scale biotechnological processing will require the establishment of universal comparison-standards that would enable easy assessment of one technique against another.
Collapse
Affiliation(s)
- Christos Nitsos
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Rayen Filali
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Behnam Taidi
- LGPM, CentraleSupélec, Unierstiy of Paris Sacaly, Bât Gustave Eiffel, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France.
| | - Julien Lemaire
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| |
Collapse
|
13
|
Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Bader AN, Sanchez Rizza L, Consolo VF, Curatti L. Efficient saccharification of microalgal biomass by Trichoderma harzianum enzymes for the production of ethanol. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Michelon W, Pirolli M, Mezzari MP, Soares HM, da Silva MLB. Residual sugar from microalgae biomass harvested from phycoremediation of swine wastewater digestate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2203-2210. [PMID: 31318358 DOI: 10.2166/wst.2019.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study assessed the carbohydrate and sugar production from Chlorella spp. biomass harvested from a field scale reactor simulating phycoremediation of swine wastewater. The microalgae biomass was mainly composed by (%): carbohydrates (41 ± 0.4), proteins (50 ± 0.4), and lipids (1.3 ± 0.5). The residual sugar present in the biomass was extracted via acid hydrolysis. Among different concentrations of sulfuric acid tested (i.e., 47, 94, 188, 281 and 563 mM), significantly higher sugar content was obtained with 188 mM (0.496 g-sugar g-1 microalgae-DW). The concentration of sugar present in the microalgae did not differ significantly between the biomasses harvested by either centrifugation or coagulation-flocculation. Two commercially available strains of yeast (i.e., Saccharomyces cerevisiae and S. cerevisiae chardonnay) were tested for their capability to ferment sugar from lyophilized microalgae biomass. S. cerevisiae chardonnay showed a significantly faster consumption of sugar during the exponential growth phase. Both strains of yeast were capable of consuming most of the sugar added ≅ 8 g L-1 within 24 h. Overall, the results suggest that carbohydrate-rich microalgae biomass obtained from the phycoremediation of swine wastewaters can play an important role in green design for industries seeking alternative sources of feedstock rich in sugar.
Collapse
Affiliation(s)
- William Michelon
- Federal University of Santa Catarina, Florianópolis, SC, 88040-700, Brazil E-mail: ; Victor Sopelsa, 3000, 89711-330, Concórdia, SC, Brazil
| | - Mateus Pirolli
- Federal University of Santa Catarina, Florianópolis, SC, 88040-700, Brazil E-mail:
| | - Melissa Paola Mezzari
- Baylor College of Medicine, Alkek Center for Methagenomic and Microbiome Research, One Baylor Plaza, MS BMC 385 RM 808EC, Houston, Texas 77005, USA
| | - Hugo Moreira Soares
- Federal University of Santa Catarina, Florianópolis, SC, 88040-700, Brazil E-mail:
| | | |
Collapse
|
16
|
Kavitha S, Subbulakshmi P, Rajesh Banu J, Gobi M, Tae Yeom I. Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment. BIORESOURCE TECHNOLOGY 2017; 233:34-43. [PMID: 28258994 DOI: 10.1016/j.biortech.2017.02.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Generation of bioenergy from microalgal biomass has been a focus of interest in recent years. The recalcitrant nature of microalgal biomass owing to its high cellulose content limits methane generation. Thus, the present study investigates the effect of bacterial-based biological pretreatment on liquefaction of the microalga Chlorella vulgaris prior to anaerobic biodegradation to gain insights into energy efficient biomethanation. Liquefaction of microalgae resulted in a higher biomass stress index of about 18% in the experimental (pretreated with cellulose-secreting bacteria) vs. 11.8% in the control (non-pretreated) group. Mathematical modelling of the biomethanation studies implied that bacterial pretreatment had a greater influence on sustainable methane recovery, with a methane yield of about 0.08 (g Chemical Oxygen Demand/g Chemical Oxygen Demand), than did control pretreatment, with a yield of 0.04 (g Chemical Oxygen Demand/g Chemical Oxygen Demand). Energetic analysis of the proposed method of pretreatment showed a positive energy ratio of 1.04.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - P Subbulakshmi
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
| | - Muthukaruppan Gobi
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri, Chennai, India
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
17
|
Neutral sugars determination in Chlorella: Use of a one-step dilute sulfuric acid hydrolysis with reduced sample size followed by HPAEC analysis. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 2016; 34:1225-1244. [DOI: 10.1016/j.biotechadv.2016.08.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/01/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
19
|
|
20
|
Juneja A, Chaplen FWR, Murthy GS. Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels. BIORESOURCE TECHNOLOGY 2016; 213:103-110. [PMID: 26995318 DOI: 10.1016/j.biortech.2016.02.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
A compartmentalized genome scale metabolic network was reconstructed for Chlorella variabilis to offer insight into various metabolic potentials from this alga. The model, iAJ526, was reconstructed with 1455 reactions, 1236 metabolites and 526 genes. 21% of the reactions were transport reactions and about 81% of the total reactions were associated with enzymes. Along with gap filling reactions, 2 major sub-pathways were added to the model, chitosan synthesis and rhamnose metabolism. The reconstructed model had reaction participation of 4.3 metabolites per reaction and average lethality fraction of 0.21. The model was effective in capturing the growth of C. variabilis under three light conditions (white, red and red+blue light) with fair agreement. This reconstructed metabolic network will serve an important role in systems biology for further exploration of metabolism for specific target metabolites and enable improved characteristics in the strain through metabolic engineering.
Collapse
Affiliation(s)
- Ankita Juneja
- Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Frank W R Chaplen
- Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Ganti S Murthy
- Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
21
|
A lytic bacterium's potential application in biofuel production through directly lysing the diatom Phaeodactylum tricornutum cell. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Demuez M, González-Fernández C, Ballesteros M. Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption. Biotechnol Adv 2015; 33:1615-25. [PMID: 26303095 DOI: 10.1016/j.biotechadv.2015.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 11/29/2022]
Abstract
Cell disruption is one of the most critical steps affecting the economy and yields of biotechnological processes for producing biofuels from microalgae. Enzymatic cell disruption has shown competitive results compared to mechanical or chemical methods. However, the addition of enzymes implies an associated cost in the overall production process. Recent studies have employed algicidal microorganisms to perform enzymatic cell disruption and degradation of microalgae biomass in order to reduce this associated cost. Algicidal microorganisms induce microalgae growth inhibition, death and subsequent lysis. Secreted algicidal molecules and enzymes produced by bacteria, cyanobacteria, viruses and the microalga themselves that are capable of inducing algal death are classified, and the known modes of action are described along with insights into cell-to-cell interaction and communication. This review aims to provide information regarding microalgae degradation by microorganisms and secreted algicidal substances that would be useful for microalgae cell breakdown in biofuels production processes. A better understanding of algae-to-algae communication and the specific mechanisms of algal cell lysis is expected to be an important breakthrough for the broader application of algicidal microorganisms in biological cell disruption and the production of biofuels from microalgae biomass.
Collapse
Affiliation(s)
- Marie Demuez
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain.
| | - Cristina González-Fernández
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain.
| | - Mercedes Ballesteros
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain; CIEMAT, Renewable Energy Division, Biofuels Unit, Av. Complutense 40, 28040 Madrid, Spain.
| |
Collapse
|
23
|
Demuez M, Mahdy A, Tomás-Pejó E, González-Fernández C, Ballesteros M. Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol Bioeng 2015; 112:1955-66. [DOI: 10.1002/bit.25644] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Marie Demuez
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
| | - Ahmed Mahdy
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
- Department of Agricultural Microbiology; Faculty of Agriculture; Zagazig University; 44511 Zagazig Egypt
| | - Elia Tomás-Pejó
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
| | - Cristina González-Fernández
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
| | - Mercedes Ballesteros
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
- CIEMAT; Renewable Energy Division; Biofuels Unit; Av. Complutense 40 28040 Madrid Spain
| |
Collapse
|
24
|
Simas-Rodrigues C, Villela HDM, Martins AP, Marques LG, Colepicolo P, Tonon AP. Microalgae for economic applications: advantages and perspectives for bioethanol. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4097-108. [PMID: 25873683 DOI: 10.1093/jxb/erv130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Renewable energy has attracted significant interest in recent years as a result of sustainability, environmental impact, and socio-economic considerations. Given existing technological knowledge and based on projections relating to biofuels derived from microalgae, microalgal feedstock is considered to be one of the most important renewable energy sources potentially available for industrial production. Therefore, this review examines microalgal bioethanol technology, which converts biomass from microalgae to fuel, the chemical processes involved, and possible ways of increasing the bioethanol yield, such as abiotic factors and genetic manipulation of fermenting organisms.
Collapse
Affiliation(s)
- Cíntia Simas-Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Helena D M Villela
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Aline P Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Luiza G Marques
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Angela P Tonon
- Los Alamos National Laboratory, Bioscience Division, PO Box M888, Los Alamos, NM 87545, USA
| |
Collapse
|
25
|
Bai S, Dai J, Xia M, Ruan J, Wei H, Yu D, Li R, Jing H, Tian C, Song L, Qiu D. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5531-5537. [PMID: 25342454 DOI: 10.1007/s11356-014-3730-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Hydrobiology, The Chinese Academy of Sciences and University of Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis. Appl Biochem Biotechnol 2015; 176:467-79. [DOI: 10.1007/s12010-015-1588-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/13/2015] [Indexed: 11/26/2022]
|
27
|
Cheng YS, Chen KY, Chou TH. Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production. BIORESOURCE TECHNOLOGY 2015; 176:267-272. [PMID: 25461012 DOI: 10.1016/j.biortech.2014.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
In the present study, a novel concurrent process of pretreatment and wet storage was developed and investigated by applying calcium peroxide for preservation and conversion of fresh water hyacinth biomass to fermentable sugars. The effects of CaO2 loading concentration and moisture content on the lignin reduction, carbohydrate preservation and enzymatic saccharification of water hyacinth biomass were evaluated by experimental design using a response surface methodology. The data showed that the concurrent process could conserve 70% carbohydrates and remove 40% lignin from biomass of water hyacinth at the best condition in this study. The enzymatic digestibility and reducing sugar yield from the best condition of concurrent process were around 93% and 325mg/g (dry weight) of fresh biomass, respectively. The result suggested that the concurrent process developed in this work could be a potential alternative to consolidate the pretreatment and storage of aquatic plant biomass for fermentable sugar production.
Collapse
Affiliation(s)
- Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan.
| | - Kuan-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| | - Tzung-Han Chou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| |
Collapse
|
28
|
Chen Z, Zhang J, Lei X, Zhang B, Cai G, Zhang H, Li Y, Zheng W, Tian Y, Xu H, Zheng T. Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2014; 169:784-788. [PMID: 25086475 DOI: 10.1016/j.biortech.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 06/03/2023]
Abstract
Experiments were conducted to find out the molecular features, infection process of a special alga plaque-forming microorganism and its potential influence on the biomass of Chlorella vulgaris during the infection process. Direct contact between the algal cell and the bacterium may be the primary steps needed for the bacterium to lyse the alga. Addition of C. vulgaris cells into f/2 medium allowed us obtain the object bacterium. The 16S rRNA gene sequence comparisons results showed that the plaque-forming bacterium kept the closest relationship with Labrenzia aggregata IAM 12614(T) at 98.90%. The existence of the bacterium could influence both the dry weight and lipid content of C. vulgaris. This study demonstrated that direct cell wall disruption of C. vulgaris by the bacterium would be a potentially effective method to utilize the biomass of microalgae.
Collapse
Affiliation(s)
- Zhangran Chen
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China; ShenZhen Research Institute of Xiamen University, ShenZhen 518057, China
| | - Jingyan Zhang
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China; ShenZhen Research Institute of Xiamen University, ShenZhen 518057, China
| | - Xueqian Lei
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Bangzhou Zhang
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Guanjing Cai
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Huajun Zhang
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yi Li
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Wei Zheng
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China; ShenZhen Research Institute of Xiamen University, ShenZhen 518057, China
| | - Yun Tian
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Hong Xu
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Tianling Zheng
- State Key Laboratory for Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen 361005, China; ShenZhen Research Institute of Xiamen University, ShenZhen 518057, China.
| |
Collapse
|
29
|
Tanadul OUM, VanderGheynst JS, Beckles DM, Powell AL, Labavitch JM. The impact of elevated CO2concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnol Bioeng 2014; 111:1323-31. [DOI: 10.1002/bit.25203] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Orn-u-ma Tanadul
- Department of Plant Sciences; University of California; Davis California 95616
| | - Jean S. VanderGheynst
- Biological and Agricultural Engineering; University of California; Davis California 95616
| | - Diane M. Beckles
- Department of Plant Sciences; University of California; Davis California 95616
| | - Ann L.T. Powell
- Department of Plant Sciences; University of California; Davis California 95616
| | - John M. Labavitch
- Department of Plant Sciences; University of California; Davis California 95616
| |
Collapse
|
30
|
Liu J, Chen F. Biology and Industrial Applications of Chlorella: Advances and Prospects. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 153:1-35. [PMID: 25537445 DOI: 10.1007/10_2014_286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.
Collapse
Affiliation(s)
- Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore, Singapore.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore, Singapore.
| |
Collapse
|