1
|
Chen R, Pan Z, Chu S, Xiao J, Weng R, Ouyang D, Yang Y, Wu X, Huang Z. Optimize the Preparation of Novel Pyrite Tailings Based Non-sintered Ceramsite by Plackett-Burman Design Combined With Response Surface Method for Phosphorus Removal. Front Chem 2022; 10:850171. [PMID: 35350776 PMCID: PMC8957833 DOI: 10.3389/fchem.2022.850171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
The large amount of untreated pyrite tailings has caused serious environmental problems, and the recycling of pyrite tailings is considered as an attractive strategy. Here, we reported a novel non-sintered ceramsite prepared with pyrite tailings (PTNC) as the main active raw material for phosphorus control, and the dosage effect of ingredients on total phosphorus (TP) removal ability was investigated. The results from Plackett-Burman Design (PBD) suggested the dosages of dehydrated sludge, sodium bicarbonate, and cement were the factors which significantly affect the TP removal ability. The Box-Behnken Design (BBD) based response surface methodology was further employed, and it indicated the interactions between different factors, and the optimized recipe for PTNC was 84.5 g (pyrite tailings), 10 g (cement), 1 g (calcined lime), 1 g (anhydrous gypsum), 3 g (dehydrated sludge), and 0.5 g (sodium bicarbonate). The optimized PTNC was characterized and which presented much higher specific area (7.21 m2/g) than the standard limitation (0.5 m2/g), as well as a lower wear rate (2.08%) rather than 6%. Additionally, the leaching metal concentrations of PTNC were far below the limitation of Chinese National Standard. The adsorption behavior of TP on PTNC was subsequently investigated with batch and dynamic experiments. It was found that the calculated max adsorption amount (qmax) was about 7 mg/g, and PTNC was able to offer a stable TP removal ability under different hydraulic retention time (HRT). The adsorption mechanism was discussed by model fitting analysis combined with XRD and SEM characterization, and cobalt phosphide sulfide was observed as the newly formed substance through the adsorption process, which suggested the existing of both physical and chemical adsorption effect. Our research not only offered an economic preparation method of ceramsite, but also broadened the recycling pathway of pyrite tailings.
Collapse
Affiliation(s)
- Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Zhenlin Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shuyi Chu
- Wenzhou Academy of Agricultural Sciences, Wenzhou, China
| | - Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Jibo Xiao, ; Zhida Huang,
| | - Rengui Weng
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou, China
| | - Da Ouyang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiangting Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhida Huang
- Wenzhou Institute of Industry and Science, Wenzhou, China
- *Correspondence: Jibo Xiao, ; Zhida Huang,
| |
Collapse
|
2
|
Hou D, Zhang P, Wei D, Zhang J, Yan B, Cao L, Zhou Y, Luo L. Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122631. [PMID: 32339872 DOI: 10.1016/j.jhazmat.2020.122631] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/28/2023]
Abstract
A bacterial consortium for efficient decontamination of high-concentration Fe-Mn acid mine drainage (AMD) was successfully isolated. The removal efficiencies of Fe and Mn were effective, reaching 99.8 % and 98.6 %, respectively. High-throughput sequencing of the 16S rRNA genes demonstrated that the microbial community had changed substantially during the treatment. The Fe-Mn oxidizing bacteria Flavobacterium, Brevundimonas, Stenotrophomonas and Thermomonas became dominant genera, suggesting that they might play vital roles in Fe and Mn removal. Moreover, the pH of culture increased obviously after incubation, which was benefit for depositing Fe and Mn from AMD. The specific surface area of the biogenic Fe-Mn oxides was 108-121 m2/g, and the surface contained reactive oxygen functional groups (-OH and -COOH), which also improved Fe and Mn removal efficiency. Thus, this study provides an alternative method to treat AMD containing high concentrations of Fe and Mn.
Collapse
Affiliation(s)
- Dongmei Hou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Pan Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Dongning Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Linying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
3
|
Jiang B, Li Y, Wang H, Jia L, Huang F, Hu X. Application of a new type of Si–Al porous clay material as a solid phase support for immobilizing Acidovorax sp. PM3 to treat domestic sewage. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419887819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel Si–Al porous clay material W (reprocessed from ceramic waste) was used for Acidovorax sp. strain PM3 immobilization to promote the growth of strains and improve nitrogen and phosphorus removal performance in water treatment systems. The porous clay material W was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy indicating that porous clay material W was a type of mullite with 63.52 m2/g specific surface area. After immobilization, the maximum biomass increased 2.7 times the specific growth rate and the removal rates of chemical oxygen demand (COD), ammonia (NH4+–N), and total phosphorus (TP) by the immobilized PM3 were 42.99, 29.19, and 11.76% higher than the free strain after 24 h. The Monod equation showed that the growth rate and processing speed of immobilized PM3 increased. The maximum adsorption capacities of COD and NH4+–N onto porous clay material W were 2.33 and 0.32 mg/g on the basis of Langmuir isotherm. The removal capacities of COD, NH4+–N, and TP by the immobilized PM3 were 588.24, 20.37, and 5.06 mg/l, respectively, as shown by kinetic studies. These results demonstrated that porous clay material W could improve the efficiency of microbial nitrogen and phosphorus removal, and the immobilized microorganism system could effectively treat domestic sewage. The adsorption isotherms can well describe the adsorption process. The maximum adsorption capacity of COD and NH4+–N on porous clay material W is 2.33 and 0.32 mg/g, respectively. Kinetic studies showed that the removal capacity of immobilized PM3 to COD, NH4+–N, and TP was 58.824, 20.37, and 5.06 mg/l, respectively.
Collapse
Affiliation(s)
| | - Yu Li
- Northeastern University, China
| | | | | | | | | |
Collapse
|
4
|
A value-added insight of reusing microplastic waste: Carrier particle in fluidized bed bioreactor for simultaneous carbon and nitrogen removal from septic wastewater. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wang Z, Fei X, He S, Huang J, Zhou W. Application of light-weight filtration media in an anoxic biofilter for nitrate removal from micro-polluted surface water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1016-1024. [PMID: 27533875 DOI: 10.2166/wst.2016.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The research investigated nitrate removal from micro-polluted surface water by the single-stage process of anoxic biofilter using light-weight polystyrene beads as filtration media. In this study, sodium acetate was used as an external carbon source and the nitrate removal efficiency under different regimes of hydraulic loading rate (HLR), water temperature, and C/N ratio was studied. In addition, the effect of backwash on denitrification efficiency was investigated. The results show that the biofilter achieved a high nitrate removal efficiency in 2 weeks at water temperatures ranging between 22 and 25 °C at a C/N ratio (COD:NO3(-)-N) of 6:1. Besides, the average removal efficiency of nitrate at HLRs of 5.66, 7.07 and 8.49 m(3) m(-2) h(-1) were 87.5, 87.3 and 87.1%, respectively. The average removal efficiency of nitrate nitrogen was 13.9% at a HLR of 5.66 m(3) m(-2) h(-1) at water temperatures of 12-14 °C, then it increased to 93.7% when the C/N ratio increased to 10. It suggests that the optimal hydraulic retention time is at water temperatures of 8-10 °C. The water consumption rate of backwash was about 0.2-0.3%, and denitrification efficiency returned to the normal level in 12 h after backwash.
Collapse
Affiliation(s)
- Zheng Wang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China E-mail: ;
| | - Xiang Fei
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China E-mail: ;
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China E-mail: ;
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China E-mail: ;
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China E-mail: ;
| |
Collapse
|
6
|
Huang J, Wu M, Chen J, Liu X, Chen T, Wen Y, Tang J, Xie Z. Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:158-164. [PMID: 26101969 DOI: 10.1016/j.jhazmat.2015.05.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/12/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Effects of henna plant biomass (stem) packed in an up-flow anaerobic bio-filter (UAF) on an azo dye (AO7) removal were investigated. AO7 removal, sulfanilic acid (SA) formation, and pseudo first-order kinetic constants for these reactions (kAO7 and kSA) were higher in the henna-added UAF (R2) than in the control UAF without henna (R1). The maximum kAO7 in R1 and R2 were 0.0345 and 0.2024 cm(-1), respectively, on day 18; the corresponding molar ratios of SA formation to AO7 removal were 0.582 and 0.990. Adsorption and endogenous bio-reduction were the main AO7 removal pathways in R1, while in R2 bio-reduction was the dominant. Organics in henna could be released and fermented to volatile fatty acids, acting as effective electron donors for AO7 reduction, which was accelerated by soluble and/or fixed lawsone. Afterwards, the removal process weakened over time, indicating the demand of electron donation and lawsone-releasing during the long-term operation of UAF.
Collapse
Affiliation(s)
- Jingang Huang
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Mengke Wu
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Jianjun Chen
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Xiuyan Liu
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Tingting Chen
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Yue Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Zhengmiao Xie
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| |
Collapse
|
7
|
Wahab MA, Habouzit F, Bernet N, Steyer JP, Jedidi N, Escudié R. Sequential operation of a hybrid anaerobic reactor using a lignocellulosic biomass as biofilm support. BIORESOURCE TECHNOLOGY 2014; 172:150-155. [PMID: 25260177 DOI: 10.1016/j.biortech.2014.08.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Agro-industries are facing many economic and environmental problems associated with seasonal generation of liquid and solid waste. In order to reduce treatment costs and to cope with seasonal variation, we have developed a hybrid anaerobic reactor operated sequentially by using lignocellulosic biomass (LB) as biofilm carrier support. Six LBs were tested to evaluate the treatment performance during a succession of two start-up periods, separated by a non-feeding period. After a short acclimation phase of several days, all the reactors succeeded in starting-up in less than 1month to reach an organic loading rate of 25gCODL(-1)d(-1). In addition, they restarted-up successfully in only 15days after a 3month non-feeding period, indicating that biofilms conserved their biological activities during this last phase. As a consequence, the use of LB as a biofilm support gives the potential to sustain seasonal variations of wastewater loads for industrial application.
Collapse
Affiliation(s)
- Mohamed Ali Wahab
- University of Carthage, Water Research and Technologies Centre (CERTE), Wastewater Treatment Laboratory, Tunisia; INRA, UR50, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France
| | - Frédéric Habouzit
- INRA, UR50, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France
| | - Nicolas Bernet
- INRA, UR50, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France
| | - Jean-Philippe Steyer
- INRA, UR50, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France
| | - Naceur Jedidi
- University of Carthage, Water Research and Technologies Centre (CERTE), Wastewater Treatment Laboratory, Tunisia
| | - Renaud Escudié
- INRA, UR50, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France.
| |
Collapse
|
8
|
Wu J, Chen G, Gu J, Yin W, Lu M, Li P, Yang B. Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12800-12810. [PMID: 24969431 DOI: 10.1007/s11356-014-3225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose as co-substrate in the UAF reactor. The AN and the remaining intermediates after the UAF reactor were then efficiently degraded in the ALR reactor. A removal efficiency of 100% and 96% was obtained for NB and chemical oxygen demand (COD), respectively, using sequential UAF/ALR reactors with an HRT of 8-72 h in the UAF reactor and 2-18 h in the ALR reactor. The corresponding optimal influent NB concentration varied between 100 and 400 mg l(-1) to achieve the optimal NB and COD removal. The NB removal efficiency decreased to 90% and to 97% if the HRT in the UAF reactor decreased from 8 to 2 h and the influent NB concentration increased from 400 to 800 mg l(-1), respectively. The results showed that sequential UAF/ALR system can be operated at low HRTs and high NB concentrations without significantly affecting the removal efficiency of NB in the reactor system. The UAF/ALR system can provide an effective yet low cost method for treatment of NB-containing industrial wastewater.
Collapse
Affiliation(s)
- Jinhua Wu
- Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions; Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China,
| | | | | | | | | | | | | |
Collapse
|