1
|
Ali DC, Zhang X, Wang Z. Surfactants Influencing the Biocatalytic Performance of Natural Alkane-Degrading Bacteria via Interfacial Biocatalysis in Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:291-301. [PMID: 38145885 DOI: 10.1021/acs.langmuir.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Setting superhydrophobic Mycobacterium sp. as an example, the hydrophobic bacteria acting as demulsifying agents of surfactant-stabilized conventional emulsions, vice versa, the synergistic/antagonistic influence of nonionic surfactants (Tween 80 or Span 80) on the stability of the bacteria-stabilized Pickering emulsions was investigated. At the same time, the activated/suppression effect of nonionic surfactants on microbial degradation of tetradecane, which exhibited a dose-response relationship, was also found. The hydrophobic bacteria acting as demulsifying agents and the suppression influence of nonionic surfactants on the biocatalytic performance (indexing as biomass) of natural alkane-degrading bacteria, believed to be totally separated concepts previously, are for the first time found to be closely related to in situ surface modification of bacteria with nonionic surfactants. During the degradation of tetradecane by Mycobacterium sp. in the presence of nonionic surfactants, demulsification due to the bacteria acting as demulsifying agents and interfacial biocatalysis in the bacteria-stabilized Pickering emulsions are involved, which provides useful information to select optimal dispersants for marine oil spills.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| |
Collapse
|
2
|
Kalvandi S, Garousin H, Pourbabaee AA, Alikhani HA. Formulation of a Culture Medium to Optimize the Production of Lipopeptide Biosurfactant by a New Isolate of Bacillus sp.: A Soil Heavy Metal Mitigation Approach. Front Microbiol 2022; 13:785985. [PMID: 35387088 PMCID: PMC8979173 DOI: 10.3389/fmicb.2022.785985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
This research aimed to optimize a lipopeptide biosurfactant produced from Bacillus sp. SHA302 due to its high efficiency of heavy metal release in soil. The results demonstrated that the metal release capacity of the lipopeptide biosurfactant alone increased with increasing the biosurfactant concentration. Among treatments with different biosurfactant concentrations plus acid, the highest metal release rates of 53.8% ± 1.4 and 39.3% ± 1.7 for Zn and Pb, respectively, were observed in the critical micelle concentration (CMC) + HCl treatment. The results of a factorial experiment designed for optimizing biosurfactant production showed that among five inexpensive carbon sources and six mineral nitrogen sources, sugar beet molasses (1%) and ammonium chloride (0.1%) were the most efficient sources in lowering the surface tension (ST) of the culture media to 32.2 ± 0.76 mN/m. The second step of the experiment was a Plackett-Burman design with 11 factors and showed that the four factors of pH, ammonium chloride, magnesium sulfate, and molasses significantly affected (P < 0.05) the changes in ST and biosurfactant production. The third step of the experiment was done using the response surface methodology (RSM) with a central composite design. The results showed that a pH of 7.3, 1.5 g/l of ammonium chloride, 0.3 g/l of magnesium sulfate, and 10% of sugar beet molasses yielded values of 29.2 ± 0.71 mN/m and 5.74 ± 0.52 g/l for the two variables of ST and biosurfactant production, respectively, which reached their most optimal levels.
Collapse
Affiliation(s)
| | | | - Ahmad Ali Pourbabaee
- Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
3
|
Yao L, Selmi A, Esmaeili H. A review study on new aspects of biodemulsifiers: Production, features and their application in wastewater treatment. CHEMOSPHERE 2021; 284:131364. [PMID: 34216919 DOI: 10.1016/j.chemosphere.2021.131364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The effluent produced in refineries is in the form of an oil/water emulsion that must be treated. These emulsions are often stable and a suitable method must be used to separate the oil from the emulsion. Recently, biosurfactants or biodemulsifiers have received much attention to reduce the interfacial tension between two liquids. Biodemulsifiers are produced by microorganisms and have several benefits over chemical demulsifiers such as low-toxic, biodegradability, eco-friendly and easy synthesis. They can eliminate two phases by changing the interfacial forces between the water and oil molecules. Biosurfactants are categorized based on the molecular weight of their compounds (low or high molecular weight). Sophorolipids, lipopeptides rhamnolipids, trehalolipids, glycolipid, lipoproteins, lichenysin, surfactin, and polymeric biosurfactants are several types of biosurfactants, which are produced by bacteria or fungi. This review study provides a deep evaluation of biosurfactants in the demulsification process. To this end, different types of biosurfactants, the synthesis method of various biosurfactants using various microorganisms, features of biosurfactants, and the role of biodemulsifiers in the demulsification process are thoroughly discussed. Also, the impact of various efficient factors like pH, microorganism type, temperature, the oil content in the emulsion, and gravity on biodemulsificaion was studied. Finally, the mechanism of the demulsification process was discussed. According to previous studies, rhamnolipid biodemulsifier showed the highest biodemulsification efficiency (100%) in the removal of oil from an emulsion.
Collapse
Affiliation(s)
- Lei Yao
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, 239000, Anhui, China.
| | - Abdellatif Selmi
- Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Ecole Nationale d'Ingénieurs deTunis (ENIT), Civil Engineering Laboratory, B.P. 37, Le Belvédère1002, Tunis, Tunisia
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
4
|
Dhandhi Y, Chaudhari RK, Naiya TK. Development in separation of oilfield emulsion toward green technology – A comprehensive review. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1995427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yogesh Dhandhi
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Ronak Kumar Chaudhari
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Tarun Kumar Naiya
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
5
|
Hou N, Wang Q, Sun Y, Li X, Song Q, Jiang X, Li B, Zhao X, Zang H, Li D, Li C. A novel biodemulsifier of Bacillus mojavensis XH1 - Oxalate decarboxylase with the potential for demulsification of oilfield emulsion. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124737. [PMID: 33321372 DOI: 10.1016/j.jhazmat.2020.124737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
In recent years, special attention has been devoted to biodemulsifiers as a new type of environment-friendly demulsifiers. A novel biodemulsifying oxalate decarboxylase (OxdC) secreted by Bacillus mojavensis XH1 is reported in the present study. A genome-wide comparison showed that strains with high demulsification efficiencies all possess alkane degradation genes. An analysis of the differentially expressed genes and proteins induced by different substrates showed that OxdC secreted by XH1 was an effective demulsifier. Moreover, the demulsification ability was verified by prokaryotic gene expression, knockout and complementation analyses. OxdC from XH1 exhibited a strong demulsification capacity and significantly outperformed the model protein Bacillus subtilis 168 OxdC (Yvrk), which shared a high amino acid similarity but showed limited demulsification ability. Based on a comparison of the structural characteristics, the hydrophobic amino acids on the surface of OxdC were identified as a key factor driving the favorable demulsification activity of XH1. The metabolic pathways of XH1 used liquid paraffin and glucose as substrates, illustrating that hydrocarbons are necessary for biodemulsifier secretion. The present study provides new insight into the application of OxdC as an additional genetic resource in biodemulsification.
Collapse
Affiliation(s)
- Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qiaoruo Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yang Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xianyue Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qiuying Song
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xinxin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Baoxin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
6
|
Corti-Monzón G, Nisenbaum M, Villegas-Plazas M, Junca H, Murialdo S. Enrichment and characterization of a bilge microbial consortium with oil in water-emulsions breaking ability for oily wastewater treatment. Biodegradation 2020; 31:57-72. [DOI: 10.1007/s10532-020-09894-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
|
7
|
Xian Y, Shui Y, Li M, Pei C, Zhang Q, Yao Y. pH‐Dependent thermoresponsive poly[2‐(diethylamino)ethyl acrylamide]‐grafted PVDF membranes with switchable wettability for efficient emulsion separation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yupei Xian
- School of Chemical EngineeringSichuan University Chengdu Sichuan People's Republic of China
| | - Yonggang Shui
- School of Chemical EngineeringSichuan University Chengdu Sichuan People's Republic of China
| | - Meimei Li
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
| | - Cunbao Pei
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
| | - Qiyi Zhang
- School of Chemical EngineeringSichuan University Chengdu Sichuan People's Republic of China
| | - Yongyi Yao
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
| |
Collapse
|
8
|
An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes (Basel) 2019. [DOI: 10.3390/pr7070470] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The processing of crude oil often requires the extraction of a large amount of water. Frequently, crude oil is mixed with water to form water-in-crude oil emulsions as the result of factors such as high shear at the production wellhead and surface-active substances that are naturally present in crude oil. These emulsions are undesirable and require demulsification to remove the dispersed water and associated inorganic salts in order to meet production and transportation specifications. Additionally, the demulsification of these crude oil emulsions mitigates corrosion and catalyst poisoning and invariably maximizes the overall profitability of crude oil production. Recently, there has been growing research interest in developing workable solutions to the difficulties associated with transporting and refining crude oil emulsions and the restrictions on produced water discharge. Therefore, this paper reviews the recent research efforts on state-of-the-art demulsification techniques. First, an overview of crude oil emulsion types, formation, and stability is presented. Then, the parameters and mechanisms of emulsification formation and different demulsification techniques are extensively examined. It is worth noting that the efficiency of each of these techniques is dependent on the operating parameters and their interplay. Moreover, a more effective demulsification process could be attained by leveraging synergistic effects by combining one or more of these techniques. Finally, this literature review then culminates with propositions for future research. Therefore, the findings of this study can help for a better understanding of the formation and mechanisms of the various demulsification methods of crude oil to work on the development of green demulsifiers by different sources.
Collapse
|
9
|
Hippolyte MT, Augustin M, Hervé TM, Robert N, Devappa S. Application of response surface methodology to improve the production of antimicrobial biosurfactants by Lactobacillus paracasei subsp. tolerans N2 using sugar cane molasses as substrate. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0234-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Meirelles AAD, da Cunha RL, Gombert AK. The role of Saccharomyces cerevisiae in stabilizing emulsions of hexadecane in aqueous media. Appl Microbiol Biotechnol 2018; 102:3411-3424. [DOI: 10.1007/s00253-017-8725-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
|
11
|
Rocha e Silva FCP, Roque BAC, Rocha e Silva NMP, Rufino RD, Luna JM, Santos VA, Banat IM, Sarubbo LA. Yeasts and bacterial biosurfactants as demulsifiers for petroleum derivative in seawater emulsions. AMB Express 2017; 7:202. [PMID: 29143238 PMCID: PMC5688055 DOI: 10.1186/s13568-017-0499-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
Oil sludge or waste generated in transport, storage or refining forms highly stable mixtures due to the presence and additives with surfactant properties and water forming complex emulsions. Thus, demulsification is necessary to separate this residual oil from the aqueous phase for oil processing and water treatment/disposal. Most used chemical demulsifiers, although effective, are environmental contaminants and do not meet the desired levels of biodegradation. We investigated the application of microbial biosurfactants as potential natural demulsifiers of petroleum derivatives in water emulsions. Biosurfactants crude extracts, produced by yeasts (Candida guilliermondii, Candida lipolytica and Candida sphaerica) and bacteria (Pseudomonas aeruginosa, Pseudomonas cepacia and Bacillus sp.) grown in industrial residues, were tested for demulsification capacity in their crude and pure forms. The best results obtained were for bacterial biosurfactants, which were able to recover about 65% of the seawater emulsified with motor oil compared to 35–40% only for yeasts products. Biosurfactants were also tested with oil-in-water (O/W) and water-in-oil (W/O) kerosene model emulsions. No relationship between interfacial tension, cell hydrophobicity and demulsification ratios was observed with all the biosurfactants tested. Microscopic illustrations of the emulsions in the presence of the biosurfactants showed the aspects of the emulsion and demulsification process. The results obtained demonstrate the potential of these agents as demulsifiers in marine environments.
Collapse
|
12
|
Zhang Y, Liu J, Huang X, Lu L, Peng K. Chemically modified surface functional groups of Alcaligenes sp. S-XJ-1 to enhance its demulsifying capability. Appl Microbiol Biotechnol 2017; 101:3839-3848. [PMID: 28091790 DOI: 10.1007/s00253-017-8111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022]
Abstract
Cell-surface functional groups (amino, carboxyl, hydroxyl, as well as phosphate) were chemically modified in various ways to enhance the demulsification capability of the demulsifying bacteria Alcaligenes sp. S-XJ-1. Results demonstrated that the demulsifying activity was significantly inhibited by amino enrichment with cetyl trimethyl ammonium bromide, amino methylation, hydroxyl acetylation, and phosphate esterification, but was gradually promoted by carboxyl blocking with increasing the extents of esterification. Compared with the raw biomass, an optimal esterification of carboxyl moieties enhanced the demulsification ratio by 26.5% and shortened the emulsion half-life from 24 to 8.8 h. The demulsification boost was found to be dominated by strengthened hydrophobicity (from 53° to 74°) and weakened electronegativity (from -34.6 to -4.3 mV at pH 7.0) of the cell surface, allowing the rapid dispersion and adsorption of cells onto the oil-water interface. The chemical modification of the functional groups on the biomass surface is a promising tool for the creation of a high-performance bacterial demulsifier.
Collapse
Affiliation(s)
- Yuyan Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China
| | - Kaiming Peng
- Post-Doctoral Research Station, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Zolfaghari R, Fakhru’l-Razi A, Abdullah LC, Elnashaie SS, Pendashteh A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.026] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Peng K, Wang X, Lu L, Liu J, Guan X, Huang X. Insights into the Evolution of an Emulsion with Demulsifying Bacteria Based on Turbiscan. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kaiming Peng
- Post-doctoral
research station, Tongji University, Shanghai 200092, China
| | - Xuhui Wang
- College
of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Lijun Lu
- College
of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Jia Liu
- College
of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Xiupeng Guan
- Beijing LDS Technology Co., Ltd., Beijing 100101, China
| | - Xiangfeng Huang
- College
of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Furtado GF, Picone CS, Cuellar MC, Cunha RL. Breaking oil-in-water emulsions stabilized by yeast. Colloids Surf B Biointerfaces 2015; 128:568-576. [DOI: 10.1016/j.colsurfb.2015.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|
16
|
High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J Microbiol Biotechnol 2015; 31:691-706. [PMID: 25739564 DOI: 10.1007/s11274-015-1830-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/22/2015] [Indexed: 12/31/2022]
Abstract
High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses.
Collapse
|
17
|
Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol 2014; 32:221-9. [DOI: 10.1016/j.tibtech.2014.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
|
18
|
Huang X, Peng K, Lu L, Wang R, Liu J. Carbon source dependence of cell surface composition and demulsifying capability of Alcaligenes sp. S-XJ-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3056-3064. [PMID: 24476023 DOI: 10.1021/es404636j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biodemulsifiers are environmentally friendly agents used in recycling oil or purifying water from emulsion, yet the demulsifying feature of cell-surface composition remains unclear. In this study, potentiometric titration, attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry were combined to characterize cell-surface chemical composition of demulsifying strain Alcaligenes sp. S-XJ-1 cultivated with different carbon sources. Cells cultivated with alkane contained abundant elemental nitrogen and basic functional groups, indicating that their surface was rich in proteins or peptides, which contributed to their highest demulsifying efficiency. For cells cultivated with fatty acid ester, the relatively abundant surface lipid contributed to a 50% demulsification ratio owing to the presence of more acidic functional group. The cells cultivated with glucose exhibited a high oxygen concentration (O/C ∼0.28), which indicated the presence of more polysaccharides on the cell surface. This induced the lowest demulsification ratio of 30%. It can be concluded that cell surface-associated proteins or lipids other than the polysaccharide of the demulsifying strain played a positive role in the demulsification activity. In addition, the cell-surface oligoglutamate compounds identified in situ were crucial to the demulsifying capability.
Collapse
Affiliation(s)
- Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University , Shanghai 200092, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Zhao Y, Paso K, Zhang X, Sjöblom J. Utilizing ionic liquids as additives for oil property modulation. RSC Adv 2014. [DOI: 10.1039/c3ra46842a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|