1
|
Shamskilani M, Masojídek J, Abbasiniasar M, Ganji A, Shayegane J, Babaei A. Microalgae cultivation trials in a membrane bioreactor operated in heterotrophic, mixotrophic, and phototrophic modes using ammonium-rich wastewater: The study of fouling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2732-2745. [PMID: 38822611 DOI: 10.2166/wst.2024.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In this work, microalgae cultivation trials were carried out in a membrane bioreactor to investigate fouling when the cultures of Chlorellavulgaris were grown under mixotrophic, heterotrophic, and phototrophic cultivation regimes. The Chlorella cultures were cultivated in wastewater as a source of nutrients that contained a high concentration of ammonium. In mixotrophic cultivation trials, the results showed that the elevated contents of carbohydrates in the soluble microbial product and proteins in extracellular polymeric substances probably initiated membrane fouling. In this case, the highest protein content was also found in extracellular polymeric substances due to the high nitrogen removal rate. Consequently, transmembrane pressure significantly increased compared to the phototrophic and heterotrophic regimes. The data indicated that cake resistance was the main cause of fouling in all cultivations. Higher protein content in the cake layer made the membrane surface more hydrophobic, while carbohydrates had the opposite effect. Compared to a mixotrophic culture, a phototrophic culture had a larger cell size and higher hydrophobicity, leading to less membrane fouling. Based on our previous data, the highest ammonia removal rate was reached in the mixotrophic cultures; nevertheless, membrane fouling appeared to be the fundamental problem.
Collapse
Affiliation(s)
- Mehrdad Shamskilani
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre ALGATECH, Institute of Microbiology AV ČR, v.v.i., Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mahdi Abbasiniasar
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Ganji
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11365-8639, Tehran, Iran
| | - Jalal Shayegane
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11365-8639, Tehran, Iran
| | - Azadeh Babaei
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran E-mail:
| |
Collapse
|
2
|
Lin YS, Sun CL, Tsang S, Bensalem S, Le Pioufle B, Wang HY. Label-free and noninvasive analysis of microorganism surface epistructures at the single-cell level. Biophys J 2023; 122:1794-1806. [PMID: 37041747 PMCID: PMC10209039 DOI: 10.1016/j.bpj.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/10/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Cell surface properties of microorganisms provide abundant information for their physiological status and fate choice. However, current methods for analyzing cell surface properties require labeling or fixation, which can alter the cell activity. This study establishes a label-free, rapid, noninvasive, and quantitative analysis of cell surface properties, including the presence and the dimension of epistructure, down to the single-cell level and at the nanometer scale. Simultaneously, electrorotation provides dielectric properties of intracellular contents. With the combined information, the growth phase of microalgae cells can be identified. The measurement is based on electrorotation of single cells, and an electrorotation model accounting for the surface properties is developed to properly interpret experimental data. The epistructure length measured by electrorotation is validated by scanning electron microscopy. The measurement accuracy is satisfactory in particular in the case of microscale epistructures in the exponential phase and nanoscale epistructures in the stationary phase. However, the measurement accuracy for nanoscale epistructures on cells in the exponential phase is offset by the effect of a thick double layer. Lastly, a diversity in epistructure length distinguishes exponential phase from stationary phase.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan; Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, SATIE, Gif sur Yvette, France
| | - Chen-Li Sun
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Sung Tsang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Sakina Bensalem
- Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Bruno Le Pioufle
- Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Yuan Y, Leng C, Zhou Y, Yuan Y, Niu Y, Xu R, Zhong H, Li F, Zhou H, Wang H. Impact of separate concentrations of polyethylene microplastics on the ability of pollutants removal during the operation of constructed wetland-microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118107. [PMID: 37156022 DOI: 10.1016/j.jenvman.2023.118107] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) in water pose a great threat to the ecological environment, but the impact of MPs on constructed wetland microbial fuel cells (CW-MFCs) has not been studied, so in order to fill the research gap and enrich the research in the field of microplastics, a 360-day experiment was designed to determine the operating status of CW-MFCs at different concentrations (0, 10, 100 and 1000 μg/L) polyethylene microplastics (PE-MPs) at different times, focusing on the changes of the CW-MFCs' ability to handle pollutants, power production performance and microbial composition. The results showed that with the accumulation of PE-MPs, the removal effect of COD and TP did not change significantly, and that the removal rate was maintained at around 90% and 77.9% respectively, within 120 d of operation. What's more, the denitrification efficiency increased (from 4.1% to 19.6%), but with the passage of time, it decreased significantly (from 7.16% to 31.9%) at the end of the experiment, while oxygen mass transfer rate was significantly increased. Further analysis showed that the accumulation of PE-MPs did not affect the current power density significantly with the changes of time and concentration, but the accumulation of PE-MPs would inhibit the exogenous electrical biofilm and increase the internal resistance, thereby affecting the electrochemical performance of the system. In addition, the results of microbial PCA showed that the composition and the activity of the microorganisms were changed under the action of PE-MPs, that the microbial community in CW-MFC showed a dose effect on the input of PE-MPs, and that the relative abundance of nitrifying bacteria with time was significantly affected by PE-MPs concentration. The relative abundance of denitrifying bacteria decreased over time, but PE-MPs promoted the reproduction of denitrifying bacteria, which was consistent with the changes in nitrification and denitrification rates. The removal modes of EP-MPs by CW-MFC include the adsorption and the electrochemical degradation, with two isothermal adsorption models of Langmuir and Freundlich being constructed in the experiment, and the electrochemical degradation process of EP-MPs being simulated. In summary, the results show that the accumulation of PE-MPs can induce a series of changes in substrate, microbial species and activity of CW-MFCs, which in turn affects the pollutant removal efficiency and power generation performance during its operation.
Collapse
Affiliation(s)
- Yonggang Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China
| | - Chunpeng Leng
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China
| | - Yunxia Niu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China
| | - Runyu Xu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China
| | - Huiyuan Zhong
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China
| | - Fuping Li
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Hongxing Zhou
- Office of Academic Affairs, Tangshan University, Tangshan, PR China.
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China.
| |
Collapse
|
4
|
Yang X, He Q, Liu T, Zheng F, Mei H, Chen M, Liu G, Vymazal J, Chen Y. Impact of microplastics on the treatment performance of constructed wetlands: Based on substrate characteristics and microbial activities. WATER RESEARCH 2022; 217:118430. [PMID: 35429885 DOI: 10.1016/j.watres.2022.118430] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Presence of microplastics (MPs) in wastewater has posed a huge ecosystem risk. Constructed wetlands (CWs) can effectively intercept MPs, while with MPs accumulation the response of CWs' performance is still unclear. In order to evaluate those effects, we conducted a 370-day experiment using CW microcosms fed with different levels (0, 10, 100, and 1000 μg/L) of polystyrene (PS) MPs (diameter: 50-100 μm). Results showed that nitrogen removal efficiency was increased (by 3.9%-24.7%) during the first 60 days and then decreased (by 7.1%-41.3%) with MPs accumulating, but no obvious change in COD and TP removal was observed. From further analysis, MPs accumulation changed the biofilm composition (TOC content increased from 41.4% to 52.7%), substrate porosity (electrical resistivity increased by 1.2-2.4 folds), and oxygen mass transfer (|KLa,O2| increased from 3.5% to 18.6%). Moreover, the microbial dynamics presented a higher abundance of nitrifiers (Nitrospira and Nitrosomonas) during the 60-day experiment and a lower abundance in the last days, while denitrifiers (Thauera, Thiobacillus, and Anaerolinea) had a high relative abundance throughout the experiment, being consistent with the variation of nitrification and denitrification rates. Finally, structural equation model analysis proved that due to the changes of substrate characteristics and microbial compositions and activities, the obvious decrease in nitrification efficiency was a direct reason for the decline of nitrogen removal during 370-day MPs accumulation. Overall, our study first prove that MPs accumulation can cause a series of changes in physicochemical and microbial characteristics of substrate, and ultimately affect the nitrogen-transforming process in CWs. Although our conclusions were based on the lab-scale CWs being different from the real wetlands, we hope that the conclusions can provide the effective regulatory strategies to guide the control of MPs in the actual wetlands.
Collapse
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang He
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Feifei Zheng
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Han Mei
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Gang Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague,16521, Prague 6, Czech Republic
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
5
|
Asgharnejad H, Sarrafzadeh MH. Development of Digital Image Processing as an Innovative Method for Activated Sludge Biomass Quantification. Front Microbiol 2020; 11:574966. [PMID: 33042087 PMCID: PMC7530208 DOI: 10.3389/fmicb.2020.574966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
Activated sludge process is the most common method for biological treatment of industrial and municipal wastewater. One of the most important parameters in performance of activated sludge systems is quantitative monitoring of biomass to keep the cell concentration in an optimum range. In this study, a novel method for activated sludge quantification based on image processing and RGB analysis is proposed. According to the results, the intensity of blue color in the macroscopic image of activated sludge culture can be a very accurate index for cell concentration measurement and R2 coefficient, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) which are 0.990, 2.000, 0.323, and 13.848, respectively, prove this claim. Besides, in order to avoid the difficulties of working in the three-parameter space of RGB, converting to grayscale space has been applied which can estimate cell concentration with R 2 = 0.99. Ultimately, an exponential correlation between RGB values and cell concentrations in lower amounts of biomass has been proposed based on Beer-Lambert law which can estimate activated sludge biomass concentration with R 2 = 0.97 based on B index.
Collapse
Affiliation(s)
- Hashem Asgharnejad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
6
|
Kumar V, Singh SB, Singh S. COVID-19: Environment concern and impact of Indian medicinal system. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104144. [PMID: 33520648 PMCID: PMC7836929 DOI: 10.1016/j.jece.2020.104144] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 05/02/2023]
Abstract
The COVID-19 outbreak has came in existence in late December 2019 at Wuhan, China. It is declared as an epidemic by WHO. The rationale of this study is to provide the details regarding prevention, environment concern, social economic consequences, and medicines for COVID-19. Social distancing, screening, lockdown, use of mask and application of sanitizer or soap at regular time interval is the best prevention against COVID-19. The "oral-feces" transmission of COVID-19 is threat to environment. Improper disposal of medical/biomedical and human waste may harm the total environment. Nitrifying-enriched activated sludge i.e. NAS approach can play important role to clean the environment compartments like sludge and waste. COVID-19 has shown impact on social and economic life, but there is no alternate until the drug discovery. In medicine or treatment of COVID-19 point of views, an integrated approach between modern and traditional medicine system may ensure an early prevention of further viral spread. Based on the symptoms of COVID-19, list of herbs and drugs of Indian Medicine System has been searched and reported. To develop the potential drug against COVID-19, the detailed experimentation and clinical trials to be performed for future prospective.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Madhya Pradesh, 474009, India
| | - Shyam Babu Singh
- Department of Ayurveda, Regional Ayurveda Research Institute for Drug Development, Madhya Pradesh, 474009, India
| | - Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144002, India
- Punjab Biotechnology Incubators, Mohali, Punjab, 160059, India
- Regional Advanced Water Testing Laboratory, Mohali, Punjab, 160059, India
| |
Collapse
|
7
|
Rezvani F, Sarrafzadeh MH. Autotrophic granulation of hydrogen consumer denitrifiers and microalgae for nitrate removal from drinking water resources at different hydraulic retention times. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110674. [PMID: 32383647 DOI: 10.1016/j.jenvman.2020.110674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
To avoid hydrogen injection and to enhance the settleability of microbial biomass in biological treatment of nitrate-contaminated drinking water resources, a new method based on granulation of a mixture of hydrogen consumer denitrifiers (HCD) and microalgae is introduced. Decreasing hydraulic retention time (HRT) was applied as the selection pressure in an up-flow photobioreactor to increase the speed of granulation and nitrate removal under autotrophic condition during a 50-day operation. Formation of granules occurred at three phases including granule nucleation, growth of granule, and mature granule, with decreasing the values of ζ-potential from -19 mV to -4 mV. Enhancement of microbial attachment within granule formation could reduce the presence of total suspended solids in the effluent. Developed granules of HCD and microalgae could settle down with velocity of 40 ± 0.6 m/h when reaching the average size of 1.2 mm at day 40. Complete NO3--N removal from drinking water was achieved from the initial stage of granulation until the end of operation at all HRTs of 3 days-5 h. The clear treated water was obtained at the growth phase when the chemical oxygen demand and phosphate were undetectable. Therefore, the application of HCD-microalgae granule is a promising way for nitrate removal from water.
Collapse
Affiliation(s)
- Fariba Rezvani
- UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Iran.
| |
Collapse
|
8
|
Rezvani F, Sarrafzadeh MH, Oh HM. Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Babaei A, Mehrnia MR. Fouling in microalgal membrane bioreactor containing nitrate-enriched wastewater under different trophic conditions. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Farías-Álvarez L, Gschaedler-Mathis A, Sánchez-Ortiz A, Femat R, Cervantes-Martínez J, Arellano-Plaza M, Zamora-Pedraza C, Amillastre E, Ghommidh C, Herrera-López E. Xanthophyllomyces dendrorhous physiological stages determination using combined measurements from dielectric and Raman spectroscopies, a cell counter system and fluorescence flow cytometry. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism. Sci Rep 2016; 6:33343. [PMID: 27627851 PMCID: PMC5024131 DOI: 10.1038/srep33343] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022] Open
Abstract
This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model’s simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration.
Collapse
|
12
|
Tang B, Chen X, Qiu B, Zhang Z, Bin L, Huang S, Fu F. Insights into the operational characteristics of a multi-habitat membrane bioreactor: Internal variation and membrane fouling. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Sarrafzadeh MH, La HJ, Seo SH, Asgharnejad H, Oh HM. Evaluation of various techniques for microalgal biomass quantification. J Biotechnol 2015; 216:90-7. [DOI: 10.1016/j.jbiotec.2015.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
14
|
Xie E, Ding A, Dou J, Zheng L, Yang J. Study on decaying characteristics of activated sludge from a circular plug-flow reactor using response surface methodology. BIORESOURCE TECHNOLOGY 2014; 170:428-435. [PMID: 25164334 DOI: 10.1016/j.biortech.2014.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 06/03/2023]
Abstract
Using pH values, temperature, and dissolved oxygen as the influencing factors, a decaying characteristics experiment of activated sludge was carried out by combining the LIVE/DEAD® Baclight technique with the 2,3,5-triphenyl tetrazolium chloride - dehydrogenase activity determination method. Using batch experiments, a response surface methodology was applied in the experimental design to determine the most important influential factor in the decay of activated sludge. The activated sludge mixed liquor for the experiment was generated in a laboratory-scale circular plug-flow reactor, which has already been approved for an invention patent. The analyzed results revealed that the most important influential factor in sludge activity decay is the pH, followed by temperature and then dissolved oxygen. After the decay experiment, 40.94-90.03% of sludge activity decay is caused by reduced cell activity, and the rest is due to cell death.
Collapse
Affiliation(s)
- En Xie
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jin Yang
- Shanghai SEP Analytical Services Co., Ltd., Shanghai 200335, China
| |
Collapse
|
15
|
Shariati FP, Heran M, Sarrafzadeh MH, Mehrnia MR, Sarzana G, Ghommidh C, Grasmick A. Biomass characterization by dielectric monitoring of viability and oxygen uptake rate measurements in a novel membrane bioreactor. BIORESOURCE TECHNOLOGY 2013; 35:425-31. [PMID: 23708851 DOI: 10.1080/09593330.2013.831459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The application of permittivity and oxygen uptake rate (OUR) as biological process control parameters in a wastewater treatment system was evaluated. Experiments were carried out in a novel airlift oxidation ditch membrane bioreactor under different organic loading rates (OLR). Permittivity as representative of activated sludge viability was measured by a capacitive on-line sensor. OUR was also measured as a representative for respirometric activity. Results showed that the biomass concentration increases with OLR and all biomass related measurements and simulators such as MLSS, permittivity, OUR, ASM1 and ASM3 almost follow the same increasing trends. The viability of biomass decreased when the OLR was reduced from 5 to 4 kg COD m(-3)d(-1). During decreasing of OLR, biomass related parameters generally decreased but not in a similar manner. Also, protein concentration in the system during OLR decreasing changed inversely with the activated sludge viability.
Collapse
Affiliation(s)
- Farshid Pajoum Shariati
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; IEM, Université Montpellier 2, F-34095 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|