1
|
Lei C, Guo X, Zhang M, Zhou X, Ding N, Ren J, Liu M, Jia C, Wang Y, Zhao J, Dong Z, Lu D. Regulating the metabolic flux of pyruvate dehydrogenase bypass to enhance lipid production in Saccharomyces cerevisiae. Commun Biol 2024; 7:1399. [PMID: 39462103 PMCID: PMC11513081 DOI: 10.1038/s42003-024-07103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
To achieve high efficiency in microbial cell factories, it is crucial to redesign central carbon fluxes to ensure an adequate supply of precursors for producing high-value compounds. In this study, we employed a multi-omics approach to rearrange the central carbon flux of the pyruvate dehydrogenase (PDH) bypass, thereby enhancing the supply of intermediate precursors, specifically acetyl-CoA. This enhancement aimed to improve the biosynthesis of acetyl-CoA-derived compounds, such as terpenoids and fatty acid-derived molecules, in Saccharomyces cerevisiae. Through transcriptomic and lipidomic analyses, we identified ALD4 as a key regulatory gene influencing lipid metabolism. Genetic validation demonstrated that overexpression of the mitochondrial acetaldehyde dehydrogenase (ALDH) gene ALD4 resulted in a 20.1% increase in lipid production. This study provides theoretical support for optimising the performance of S. cerevisiae as a "cell factory" for the production of commercial compounds.
Collapse
Affiliation(s)
- Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China.
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meihan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajuan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China.
| |
Collapse
|
2
|
Hassane AMA, Eldiehy KSH, Saha D, Mohamed H, Mosa MA, Abouelela ME, Abo-Dahab NF, El-Shanawany ARA. Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 2024; 206:338. [PMID: 38955856 DOI: 10.1007/s00203-024-04054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, P.O. Box 784028, Assam, India
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, P.O. Box 255000, Zibo, China
| | - Mohamed A Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, P.O. Box 12619, Giza, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Nageh F Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Abdel-Rehim A El-Shanawany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| |
Collapse
|
3
|
Lei Y, Wang X, Sun S, He B, Sun W, Wang K, Chen Z, Guo Z, Li Z. A review of lipid accumulation by oleaginous yeasts: Culture mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170385. [PMID: 38364585 DOI: 10.1016/j.scitotenv.2024.170385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/18/2024]
Abstract
Microbial lipids have attracted considerable interest owing to their favorable environmental sustainability benefits. In laboratory-scale studies, the factors impacting lipid production in oleaginous yeasts, including culture conditions, nutrients, and low-cost substrates, have been extensively studied. However, there were several different modes of microbial lipid cultivation (batch culture, fed-batch culture, continuous culture, and other novel culture modes), making it difficult to comprehensively analyze impacting factors under different cultivation modes on a laboratory scale. And only few cases of microbial lipid production have been conducted at the pilot scale, which requires more technological reliability assessments and environmental benefit evaluations. Thus, this study summarized the different culture modes and cases of scale-up processes, highlighting the role of the nutrient element ratio in regulating culture mode selection and lipid accumulation. The cost distribution and environmental benefits of microbial lipid production by oleaginous yeasts were also investigated. Our results suggested that the continuous culture mode was recommended for the scale-up process because of its stable lipid accumulation. More importantly, exploring the continuous culture mode integrated with other efficient culture modes remained to be further investigated. In research on scale-up processes, low-cost substrate (organic waste) application and optimization of reactor operational parameters were key to increasing environmental benefits and reducing costs.
Collapse
Affiliation(s)
- Yuxin Lei
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Shushuang Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Bingyang He
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Wenjin Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Kexin Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhengxian Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhiling Guo
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
4
|
Sun F, Yang H, Zhang X, Tan F, Wang G, Shi Q. Metagenomic and metabolomic analysis of the effect of bleaching on unsaturated fatty acid synthesis pathways in coral symbionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169487. [PMID: 38142991 DOI: 10.1016/j.scitotenv.2023.169487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Unsaturated fatty acids (UFAs) are known to play a vital role in regulating stress resistance and metabolism in corals. Nevertheless, a comprehensive understanding of the microbial and functional composition of the UFA synthesis pathway (UFASP) remains lacking. This study employed metagenome and metabolome to investigate the microbial community, function, and metabolic response of UFASP in reef-building corals inhabiting the Nansha Islands. Our findings revealed significantly higher diversity for the UFASP microbe in bleached corals compared to unbleached corals. Furthermore, principal coordinates analysis (PCoA) and taxonomy assessments exhibited notable distinctions in the microbe between the two coral states. Notably, the dominant microorganisms involved in UFASP were Dinophyceae, Sordariomycetes, Ulvophyceae, and Chlorophyceae. Bleaching resulted in a considerable increase in fungal abundance within coral symbionts. A total of 12 KEGG Orthology (KO) were identified in UFASP, with PCoA analysis indicating significant differences in their abundance between bleached and unbleached corals. UFASP's beta-Oxidation module exhibited reduced abundance in bleached corals. Contribution analysis highlighted the participation of Symbiodiniaceae, Ascomycota, Chlorophyta, Proteobacteria, and Actinobacteria in UFASP. Notably, Symbiodiniaceae and Ascomycota were the major contributors to two UFASP modules, with the latter displaying greater involvement in bleached corals. Furthermore, significant differences in n3 and n6-family metabolites were observed between bleached and unbleached corals. Notably, bleaching induced a reduction in metabolites of Symbiodiniaceae, while an increase in the multiple UFAs abundance was detected in bleached corals. These findings suggest that bleaching-induced alterations coral symbionts composition directly impact the functionality of UFASP, ultimately affecting the corals' capacity to adapt to stress.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Fei Tan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Guan Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
5
|
Tanimura A, Adachi H, Tanabe K, Ogawa J, Shima J. Hannaella oleicumulans sp. nov. and Hannaella higashiohmiensis sp. nov., two novel oleaginous basidiomycetous yeast species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37728232 DOI: 10.1099/ijsem.0.006027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Three strains of novel oleaginous yeast species were isolated from soil samples collected in Shiga Prefecture, Japan. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 region of the large subunit (LSU) of the rRNA genes indicated that these novel yeast species are members of the genus Hannaella. The results of molecular phylogenetic analysis indicated that strains 38-3 and 8s1 were closely related to Hannaella oryzae. They differed by 10 nucleotide substitutions and one gap (1.77 %) in the D1/D2 region of the LSU of the rRNA genes and by 17-18 nucleotide substitutions and 10-11 gaps (5.45-5.85 %) in the ITS region. Strain 51-4 differed from the type strain of the most closely related species, Hannaella pagnoccae, by 26 nucleotide substitutions (4.46 %) in the D1/D2 region of the LSU of the rRNA genes and by 20 nucleotide substitutions and six gaps (5.42 %) in the ITS region. The names proposed for these previously undescribed species are Hannaella oleicumulans sp. nov. and Hannaella higashiohmiensis sp. nov.
Collapse
Affiliation(s)
- Ayumi Tanimura
- Office of Society Academia Collaboration for Innovation, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hikaru Adachi
- Department of Food and Agriculture Science, Graduate School of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Koichi Tanabe
- Department of Food and Agriculture Science, Graduate School of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Microbial Resource Center for Fermentation and Brewing, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Shima
- Department of Food and Agriculture Science, Graduate School of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Microbial Resource Center for Fermentation and Brewing, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
6
|
Oleaginous yeasts: Biodiversity and cultivation. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Couvillion SP, Danczak RE, Naylor D, Smith ML, Stratton KG, Paurus VL, Bloodsworth KJ, Farris Y, Schmidt DJ, Richardson RE, Bramer LM, Fansler SJ, Nakayasu ES, McDermott JE, Metz TO, Lipton MS, Jansson JK, Hofmockel KS. Rapid remodeling of the soil lipidome in response to a drying-rewetting event. MICROBIOME 2023; 11:34. [PMID: 36849975 PMCID: PMC9969633 DOI: 10.1186/s40168-022-01427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabolism of organic matter by altering microbial physiology and function. These physiological responses are mediated in part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then measured the response of the soil lipidome and metabolome during the first 3 h after wet-up. RESULTS Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccharides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, suggesting that members of this phylum were positively impacted by rewetting. CONCLUSIONS Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representative bacteria once the environmental conditions are conducive for growth. These results underscore the importance of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-environment reactions. Video Abstract.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert E Danczak
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dan Naylor
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Montana L Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kelly G Stratton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kent J Bloodsworth
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuliya Farris
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Darren J Schmidt
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachel E Richardson
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M Bramer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah J Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
8
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Lopes DD, Dien BS, Hector RE, Singh V, Thompson SR, Slininger PJ, Boundy-Mills K, Jagtap SS, Rao CV. Determining mating type and ploidy in Rhodotorula toruloides and its effect on growth on sugars from lignocellulosic biomass. J Ind Microbiol Biotechnol 2023; 50:kuad040. [PMID: 37989723 PMCID: PMC10690854 DOI: 10.1093/jimb/kuad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature. SUMMARY The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.
Collapse
Affiliation(s)
- Daiane Dias Lopes
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruce S Dien
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ronald E Hector
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Vijay Singh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie R Thompson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Patricia J Slininger
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sujit S Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
10
|
Optimization of Wheat Straw Conversion into Microbial Lipids by Lipomyces tetrasporus DSM 70314 from Bench to Pilot Scale. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Microbial lipids are renewable platforms for several applications including biofuels, green chemicals, and nutraceuticals that can be produced from several residual carbon sources. Lignocellulosic biomasses are abundant raw materials for the production of second-generation sugars with conversion yields depending on the quality of the hydrolysates and the metabolic efficiency of the microorganisms. In the present work, wheat straw pre-treated by steam explosion and enzymatically hydrolysed was converted into microbial lipids by Lipomyces tetrasporus DSM 70314. The preliminary optimization of the enzymatic hydrolysis was performed at the bench scale through the response surface methodology (RSM). The fermentation medium and set-up were optimized in terms of the nitrogen (N) source and carbon-to-nitrogen (C/N) ratio yielding to the selection of soy flour as a N source and C/N ratio of 160. The bench scale settings were scaled-up and further optimized at the 10 L-scale and finally at the 50 L pilot scale bioreactor. Process optimization also included oxygen supply strategies. Under optimized conditions, a lipid concentration of 14.8 gL−1 was achieved corresponding to a 23.1% w/w lipid yield and 67.4% w/w lipid cell content. Oleic acid was the most abundant fatty acid with a percentage of 57%. The overall process mass balance was assessed for the production of biodiesel from wheat straw.
Collapse
|
11
|
Hamidi M, Okoro OV, Rashidi K, Salami MS, Mirzaei Seveiri R, Samadian H, Shavandi A. Evaluation of two fungal exopolysaccharides as potential biomaterials for wound healing applications. World J Microbiol Biotechnol 2022; 39:49. [PMID: 36542187 DOI: 10.1007/s11274-022-03459-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.
Collapse
Affiliation(s)
- Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium.,Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Oseweuba Valentine Okoro
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Saeid Salami
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Mirzaei Seveiri
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium.
| |
Collapse
|
12
|
Angelicola MV, Fernández PM, Aybar MJ, Van Nieuwenhove CP, Figueroa LI, Viñarta SC. Bioconversion of commercial and crude glycerol to single-cell oils by the Antarctic yeast Rhodotorula glutinis R4 as a biodiesel feedstock. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J Fungi (Basel) 2022; 8:jof8101099. [PMID: 36294664 PMCID: PMC9605242 DOI: 10.3390/jof8101099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, the increasing interest in microalgae as sources of new biomolecules and environmental remediators stimulated scientists’ investigations and industrial applications. Nowadays, microalgae are exploited in different fields such as cosmeceuticals, nutraceuticals and as human and animal food supplements. Microalgae can be grown using various cultivation systems depending on their final application. One of the main problems in microalgae cultivations is the possible presence of biological contaminants. Fungi, among the main contaminants in microalgal cultures, are able to influence the production and quality of biomass significantly. Here, we describe fungal contamination considering both shortcomings and benefits of fungi-microalgae interactions, highlighting the biological aspects of this interaction and the possible biotechnological applications.
Collapse
|
15
|
Papiliotrema laurentii: general features and biotechnological applications. Appl Microbiol Biotechnol 2022; 106:6963-6976. [PMID: 36197457 DOI: 10.1007/s00253-022-12208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Papiliotrema laurentii, previously classified as Cryptococcus laurentii, is an oleaginous yeast that has been isolated from soil, plants, and agricultural and industrial residues. This variety of habitats reflects the diversity of carbon sources that it can metabolize, including monosaccharides, oligosaccharides, glycerol, organic acids, and oils. Compared to other oleaginous yeasts, such as Yarrowia lipolytica and Rhodotorula toruloides, there is little information regarding its genetic and physiological characteristics. From a biotechnological point of view, P. laurentii can produce surfactants, enzymes, and high concentrations of lipids, which can be used as feedstock for fatty acid-derived products. Moreover, it can be applied for the biocontrol of phytopathogenic fungi, contributing to quality maintenance in post- and pre-harvest fruits. It can also improve mycorrhizal colonization, nitrogen nutrition, and plant growth. P. laurentii is also capable of degrading polyester and diesel derivatives and acting in the bioremediation of heavy metals. In this review, we present the current knowledge about the basic and applied aspects of P. laurentii, underscoring its biotechnological potential and future perspectives. KEY POINTS: • The physiological characteristics of P. laurentii confer a wide range of biotechnological applications. • The regulation of the acetyl-CoA carboxylase in P. laurentii is different from most other oleaginous yeasts. • The GEM is a valuable tool to guide the construction of engineered P. laurentii strains with improved features for bio-based products.
Collapse
|
16
|
Diwan B, Gupta P. Key media microsupplements for boosting de novo lipogenesis in an oleaginic yeast isolate. J Biosci Bioeng 2022; 134:95-104. [PMID: 35659719 DOI: 10.1016/j.jbiosc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
Present work reports a simple approach of microsupplementing nitrogen starved production media with potential activators of lipogenic enzymes for boosting de novo lipogenesis and demonstrated a 70-117 % rise in lipid content (LC) of yeast isolate Geotrichum candidum NBT-1. A hypothesis was proposed to increase the LC in the isolate at fixed minimum C/N ratio and small molecular activators for 3 key enzymes of lipogenic pathways. ATP citrate lyase, malic enzyme and acetyl CoA-carboxylase were screened in silico. Screened molecules were microsupplemented in nitrogen-starved media for examining the actual influence of their individual and synergistic combination on boosting LC of the isolate, which revealed sodium acetate as a major effector. Acetate in 4 mM concentration, independently and in combination with citric acid and sucrose resulted in a 2-2.2-fold increase in G. candidum LC from 24.8% in control to 49.27% and 53.96%, respectively. A volumetric lipid productivity of 0.0288 g/L/h with appreciable lipid coefficient of 9.77 was achieved in acetate supplemented media. Extracted lipids were 70-90% concentrated in a medium chain fatty acid (MCFA)-caprylic acid (C8:0), which has upsurging nutritional and nutraceutical importance.
Collapse
Affiliation(s)
- Batul Diwan
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur 492010, India; Centre for Ayurveda Biology and Holistic Nutrition (CABHN), The University of Transdisciplinary Health Science and Technology Bangalore, Bangalore 560064, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur 492010, India.
| |
Collapse
|
17
|
Bian X, Miao W, Zhao M, Zhao Y, Xiao Y, Li N, Wu JL. Microbiota drive insoluble polysaccharides utilization via microbiome-metabolome interplay during Pu-erh tea fermentation. Food Chem 2022; 377:132007. [PMID: 34999465 DOI: 10.1016/j.foodchem.2021.132007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
Polysaccharides are abundant components in Pu-erh tea, yet the utilization of insoluble polysaccharides under the actions of microbiota has rarely been studied. The aim of this work was to study how insoluble polysaccharides were utilized during fermentation through the investigation of the variations and correlation of microbiota with polysaccharides degradation products. Genomics study revealed the significant changes of microbiota. Metabolomics analysis showed monosaccharides (types 1 and 3) were consumed during early and middle fermentation stages, while carboxylic acids and other monosaccharides (type 2) were accumulated at middle and late pile-fermentation stages. Correlation revealed that type 1 and 3 monosaccharides, which act as energy providers, were positively associated with Aspergillus, while type 2 monosaccharides possessing multiple bioactivities and carboxylic acids influencing tea taste were positively related to Rasamsonia, Thermomyces, Bacillaceae, and Lactobacillaceae. This study would be beneficial to improve production efficiency and provide basis for quality control of Pu-erh tea fermentation.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Wen Miao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Ming Zhao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xiao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China.
| |
Collapse
|
18
|
Liu Q, Lu M, Jin C, Hou W, Zhao L, Bao J. Ultra-centrifugation force in adaptive evolution changes the cell structure of oleaginous yeast Trichosporon cutaneum into a favorable space for lipid accumulation. Biotechnol Bioeng 2022; 119:1509-1521. [PMID: 35165884 DOI: 10.1002/bit.28060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 11/08/2022]
Abstract
Microbial lipid production from lignocellulose biomass provides an essential option for sustainable and carbon neutral supply of future aviation fuels, biodiesel, as well as various food and nutrition products. Oleaginous yeast is the major microbial cell factory but its lipid producing performance is far below the requirements of industrial application. Here we show an ultra-centrifugation fractionation in adaptive evolution (UCF) of Trichosporon cutaneum based on the minor cell density difference. The lightest cells with the maximum intracellular lipid content were isolated by ultra-centrifugation fractionation in the long-term adaptive evolution. Significant changes occurred in the cell morphology with a fragile cell wall wrapping and enlarged intracellular space (two orders of magnitude increase in cell size). Complete and coordinate assimilations of all non-glucose sugars derived from lignocellulose were triggered and fluxed into lipid synthesis. Genome mutations and significant transcriptional regulations of the genes responsible for cell structure were identified and experimentally confirmed. The obtained Trichosporon cutaneum MP11 cells achieved a high lipid production of wheat straw, approximately five-folds greater than that of the parental cells. The study provided an effective method for screening the high lipid containing oleaginous yeast cells as well as the intracellular products accumulating cells in general. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minping Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ci Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weiliang Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liao Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
19
|
Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149765. [PMID: 34454141 DOI: 10.1016/j.scitotenv.2021.149765] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/27/2023]
Abstract
There is a growing global recognition that microalgae-based biofuel are environment-friendly and economically feasible options because they incur several advantages over traditional fossil fuels. Also, the microalgae can be manipulated for extraction of value-added compounds such as lipids (triacylglycerols), carbohydrates, polyunsaturated fatty acids, proteins, pigments, antioxidants, various antimicrobial compounds, etc. Recently, there is an increasing focus on the co-cultivation practices of microalgae with other microorganisms to enhance biomass and lipid productivity. In a co-cultivation strategy, microalgae grow symbiotically with other heterotrophic microbes such as bacteria, yeast, fungi, and other algae/microalgae. They exchange nutrients and metabolites; this helps to increase the productivity, therefore facilitating the commercialization of microalgal-based fuel. Co-cultivation also facilitates biomass harvesting and waste valorization, thereby help to build an algal biorefinery platform for bioenergy production along with multivariate high value bioproducts and simultaneous waste bioremediation. This article comprehensively reviews various microalgae cultivation practices utilizing co-culture approaches with other algae, fungi, bacteria, and yeast. The review mainly focuses on the impact of several binary culture strategies on biomass and lipid yield. The advantages and challenges associated with the procedure along with their respective cultivation modes have also been presented and discussed in detail.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
20
|
|
21
|
Triacyl Glycerols from Yeast-Catalyzed Batch and Fed-Batch Bioconversion of Hydrolyzed Lignocellulose from Cardoon Stalks. FERMENTATION 2021. [DOI: 10.3390/fermentation7040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lipogenic ability of the yeast Solicoccozyma terricola DBVPG 5870 grown on hydrolyzed lignocellulose obtained from cardoon stalks was evaluated. Data on cell biomass, lipid production, and fatty acid profiles of triacylglycerols obtained in batch and fed-batch experiments were carried out at the laboratory scale in a 5L fermenter, and at two different temperatures (20 and 25 °C) were reported. The higher production of total intracellular lipids (13.81 g/L) was found in the fed-batch experiments carried out at 20 °C. S. terricola exhibited the ability to produce high amounts of triacylglycerol (TAGs) with a characteristic fatty acids profile close to that of palm oil. The TAGs obtained from S. terricola grown on pre-treated lignocellulose could be proposed as a supplementary source of oleochemicals. Indeed, due to the rising prices of fossil fuels and because of the environmental-related issues linked to their employment, the use of TAGs produced by S. terricola grown on lignocellulose could represent a promising option as a supplementary oleochemical, especially for biodiesel production.
Collapse
|
22
|
Effect of Selected Cations and B Vitamins on the Biosynthesis of Carotenoids by Rhodotorula mucilaginosa Yeast in the Media with Agro-Industrial Wastes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, there has been an increase in the search for novel raw materials for the production of natural carotenoids. Among yeasts, Rhodotorula species have the ability to synthesize carotenoids, mainly β-carotene, torulene, and torularhodin, depending on the culture conditions. This study aimed to determine the effect of selected cations (barium, zinc, aluminum, manganese) and B vitamins (biotin, riboflavin, niacin, pantothenic acid) on the biosynthesis of carotenoids by Rhodotorula mucilaginosa MK1 and estimate the percentages of β-carotene, torulene, and torularhodin synthesized by the yeast. The cultivation was carried out in a medium containing glycerol (waste resulting from biodiesel production) as a carbon source and potato wastewater (waste resulting from potato starch production) as a nitrogen source. Carotenoid biosynthesis was stimulated by the addition of aluminum (300 mg/L) or aluminum (300 mg/L) and niacin (100 µg/L) to the medium. The number of carotenoids produced by R. mucilaginosa MK1 in the medium containing only aluminum and in the medium with aluminum and niacin was 146.7 and 180.5 µg/gd.m., respectively. This content was 101% and 147% higher compared to the content of carotenoids produced by yeast grown in the control medium (73.0 µg/gd.m.). The addition of aluminum and barium seemed to have a positive effect on the biosynthesis of torulene, and the percentage of this compound increased from 31.86% to 75.20% and 68.24%, respectively. Niacin supplementation to the medium increased the percentage of torularhodin produced by the yeast from 23.31% to 31.59–33.79%. The conducted study showed that there is a possibility of intensifying carotenoid biosynthesis by red yeast and changing the percentages of individual carotenoids fractions by adding cations or B vitamins to the medium. Further research is needed to explain the mechanism of action of niacin on the stimulation of torularhodin biosynthesis.
Collapse
|
23
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
24
|
Deeba F, Kumar KK, Rajacharya GH, Gaur NA. Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides. J Fungi (Basel) 2021; 7:jof7110967. [PMID: 34829254 PMCID: PMC8625802 DOI: 10.3390/jof7110967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Oleaginous yeast Rhodosporidium toruloides has great biotechnological potential and scientific interest, yet the molecular rationale of its cellular behavior to carbon and nitrogen ratios with concurrent lipid agglomeration remains elusive. Here, metabolomics adaptations of the R. toruloides in response to varying glucose and nitrogen concentrations have been investigated. In preliminary screening we found that 5% glucose (w/v) was optimal for further analysis in Rhodosporidium toruloides 3641. Hereafter, the effect of complementation to increase lipid agglomeration was evaluated with different nitrogen sources and their concentration. The results obtained illustrated that the biomass (13 g/L) and lipid (9.1 g/L) production were maximum on 5% (w/v) glucose and 0.12% (NH4)2SO4. Furthermore, to shed lights on lipid accumulation induced by nitrogen-limitation, we performed metabolomic analysis of the oleaginous yeast R. toruloides 3641. Significant changes were observed in metabolite concentrations by qualitative metabolomics through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), which were mapped onto the governing metabolic pathways. Notable finding in this strain concerns glycerol and CDP-DAG metabolism wherein reduced production of glycerol and phospholipids induced a bypass leading to enhanced de-novo triacylglyceride synthesis. Collectively, our findings help in understanding the central carbon metabolism of R. toruloides which may assist in developing rationale metabolic models and engineering efforts in this organism.
Collapse
Affiliation(s)
- Farha Deeba
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| | | | | | - Naseem A. Gaur
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| |
Collapse
|
25
|
Adel A, El-Baz A, Shetaia Y, Sorour NM. Biosynthesis of polyunsaturated fatty acids by two newly cold-adapted Egyptian marine yeast. 3 Biotech 2021; 11:461. [PMID: 34692369 DOI: 10.1007/s13205-021-03010-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023] Open
Abstract
The widespread awareness of polyunsaturated fatty acids (PUFAs) benefits for human health has increased the need for their commercial production. Two oleaginous yeast were isolated from the Mediterranean Sea fish and Red Sea fish Epinephelus aeneus and E. areolatus, respectively. These marine candidates were identified by MALDI-TOF/MS biotyper® as Lodderomyces elongisporus and Rhodotorula mucilaginosa. The effect of incubation temperature (7, 15, and 26 °C) and glucose concentration (3% and 8%) on their lipids content were investigated using Sulfo-Phospho-Vanillin (SPV) assay. Their intercellular lipids were visualized by fluorescence microscope using Nile-Red dye. L. elongisporus and R. mucilaginosa produced 20.04% and 26.79% of Linoleic acid, respectively, on normal Basal-Defatted Medium (BDM). Linoleic acid (21.4-22.7%) and α-Linolenic acid (7.5-10.8%) were produced by R. mucilaginosa and L. elongisporus, on normal BDM at 15 °C. High-Glucose BDM induced a positive effect on the total lipids production that reached its maximum of 48% and 54% by R. mucilaginosa and L. elongisporus, respectively, grown at 15 °C. Remarkably, 12.12% of long-chain 15-Docosenoic acid (C22:1) and 21.49% of Tricosanoic acid (C23:0) were detected in the FAs profile of L. elongisporus, when grown on normal BDM at 26 °C. The present study is the first one reporting the FAs profile of the Egyptian Marine L. elongisporus, and its capability to accumulate high amounts of lipids under appropriate fermentation conditions; thus, it could be considered for scaling up production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03010-4.
Collapse
Affiliation(s)
| | - Ashraf El-Baz
- Département of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 22857/79 Egypt
| | - Yousseria Shetaia
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Noha Mohamed Sorour
- Département of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 22857/79 Egypt
| |
Collapse
|
26
|
Lv G, Xu Y, Tu Y, Cheng X, Zeng B, Huang J, He B. Effects of Nitrogen and Phosphorus Limitation on Fatty Acid Contents in Aspergillus oryzae. Front Microbiol 2021; 12:739569. [PMID: 34745041 PMCID: PMC8566876 DOI: 10.3389/fmicb.2021.739569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aspergillus oryzae, commonly known as koji mold, has been widely used for the large-scale production of food products (sake, makgeolli, and soy sauce) and can accumulate a high level of lipids. In the present study, we showed the dynamic changes in A. oryzae mycelium growth and conidia formation under nitrogen and phosphorus nutrient stress. The fatty acid profile of A. oryzae was determined and the content of unsaturated fatty acid was found increased under nitrogen and phosphorus limitation. Oleic acid (C18:1), linoleic acid (C18:2), and γ-linolenic acid (C18:3) production were increased on five nitrogen and phosphorus limitation media, especially on nitrogen deep limitation and phosphorus limitation group, showing a 1. 2-, 1. 6-, and 2.4-fold increment, respectively, compared with the control. Transcriptomic analysis showed the expression profile of genes related to nitrogen metabolism, citrate cycle, and linoleic acid synthesis, resulting in the accumulation of unsaturated fatty acid. qRT-PCR results further confirmed the reliability and availability of the differentially expressed genes obtained from the transcriptome analysis. Our study provides a global transcriptome characterization of the nitrogen and phosphorus nutrient stress adaptation process in A. oryzae. It also revealed that the molecular mechanisms of A. oryzae respond to nitrogen and phosphorus stress. Our finding facilitates the construction of industrial strains with a nutrient-limited tolerance.
Collapse
Affiliation(s)
- Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ying Xu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jianhua Huang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
27
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
28
|
Sestric R, Spicer V, V Krokhin O, Sparling R, B Levin D. Analysis of the Yarrowia lipolytica proteome reveals subtle variations in expression levels between lipogenic and non-lipogenic conditions. FEMS Yeast Res 2021; 21:6133473. [PMID: 33571365 DOI: 10.1093/femsyr/foab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Oleaginous yeasts have the ability to store greater than 20% of their mass as neutral lipids, in the form of triacylglycerides. The ATP citrate lyase is thought to play a key role in triacylglyceride synthesis, but the relationship between expression levels of this and other related enzymes is not well understood in the role of total lipid accumulation conferring the oleaginous phenotype. We conducted comparative proteomic analyses with the oleaginous yeast, Yarrowia lipolytica, grown in either nitrogen-sufficient rich media or nitrogen-limited minimal media. Total proteins extracted from cells collected during logarithmic and late stationary growth phases were analyzed by 1D liquid chromatography, followed by mass spectroscopy. The ATP citrate lyase enzyme was expressed at similar concentrations in both conditions, in both logarithmic and stationary phase, but many upstream and downstream enzymes showed drastically different expression levels. In non-lipogenic conditions, several pyruvate enzymes were expressed at higher concentration. These enzymes, especially the pyruvate decarboxylase and pyruvate dehydrogenase, may be regulating carbon flux away from central metabolism and reducing the amount of citrate being produced in the mitochondria. While crucial for the oleaginous phenotype, the constitutively expressed ATP citrate lyase appears to cleave citrate in response to carbon flux upstream from other enzymes creating the oleaginous phenotype.
Collapse
Affiliation(s)
- Ryan Sestric
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Vic Spicer
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
29
|
Wiman NG, Andrews H, Rudolph E, Lee J, Choi MY. Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii. INSECTS 2020; 11:insects11110752. [PMID: 33153021 PMCID: PMC7694155 DOI: 10.3390/insects11110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Spotted-wing drosophila, Drosophila suzukii, is an invasive pest of soft-skinned fruits. Adult female flies oviposit, or lay eggs, into fruits where the larvae develop, making infested fruit unmarketable. The flies rely on alternative hosts, both cultivated and wild, to survive and maintain populations throughout the year. Better understanding of how the flies migrate between different hosts could be beneficial to improving management of the pest in crops. This study demonstrates potential to discriminate larval host of adult flies by analysis of fatty acids carried from the larvae to the adult stage in the body using a machine learning algorithm as an alternative to linear discriminant methods. Our study shows that fatty acids in adult flies can be used to determine larval host and that the machine learning algorithm can perform the discriminant analysis without making any assumptions about the data. Abstract Drosophila suzukii is a severe economic invasive pest of soft-skinned fruit crops. Management typically requires killing gravid adult female flies with insecticides to prevent damage resulting from oviposition and larval development. Fruits from cultivated and uncultivated host plants are used by the flies for reproduction at different times of the year, and knowledge of D. suzukii seasonal host plant use and movement patterns could be better exploited to protect vulnerable crops. Rearing and various marking methodologies for tracking movement patterns of D. suzukii across different landscapes have been used to better understand host use and movement of the pest. In this study, we report on potential to determine larval host for adult D. suzukii using their fatty acid profile or signature, and to use larval diet as an internal marker for adult flies in release-recapture experiments. Fatty acids can pass efficiently through trophic levels unmodified, and insects are constrained in the ability to synthesize fatty acids and may acquire them through diet. In many holometabolous insects, lipids acquired in the larval stage carry over to the adult stage. We tested the ability of a machine learning algorithm to discriminate adult D. suzukii reared from susceptible small fruit crops (blueberry, strawberry, blackberry and raspberry) and laboratory diet based on the fatty acid profile of adult flies. We found that fatty acid components in adult flies were significantly different when flies were reared on different hosts, and the machine learning algorithm was highly successful in correctly classifying flies according to their larval host based on fatty acid profile.
Collapse
Affiliation(s)
- Nik G. Wiman
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
- Correspondence: ; Tel.: +503-678-1264 (ext. 6782)
| | - Heather Andrews
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
| | - Erica Rudolph
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
| | - Jana Lee
- Horticultural Crops Research Unit, USDA-ARS, 3420 NW Orchard Ave, Corvallis, OR 97330, USA; (J.L.); (M.-Y.C.)
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, 3420 NW Orchard Ave, Corvallis, OR 97330, USA; (J.L.); (M.-Y.C.)
| |
Collapse
|
30
|
Ali SS, Al-Tohamy R, Xie R, El-Sheekh MM, Sun J. Construction of a new lipase- and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. BIORESOURCE TECHNOLOGY 2020; 313:123631. [PMID: 32540694 DOI: 10.1016/j.biortech.2020.123631] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 05/07/2023]
Abstract
A new oleaginous yeast consortium Y-BC-SH which stands for molecularly identified species Yarrowia sp., Barnettozyma californica and Sterigmatomyces halophilus was successfully constructed in this study. This multipurpose oleaginous yeast consortium was developed based on its higher ability to accumulate large amounts of lipids in the form of triacylglycerol, grow on xylose, produce lipase and xylanase and it could rapidly decolorize and degrade commonly-used textile reactive azo dyes. The specific enzyme activities of lipase, xylanase, xylan esterase, β-xylosidase, CMCase, β-glucosidase and cellobiohydrolase produced by Y-BC-SH were significantly higher than that of individual strains. As chemical oxygen demand reduction had occurred in the dye mixture solutions, it was evidence of their color removal and mineralization by Y-BC-SH. The significant induction of oxidoreductive enzymes by Y-BC-SH was probably due to the coordinated metabolic interactions of the individual strains. Phytotoxicity assay confirmed that metabolites generated after dye degradation by Y-BC-SH are non-toxic.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
31
|
Vieira NM, Dos Santos RCV, Germano VKDC, Ventorim RZ, de Almeida ELM, da Silveira FA, Ribeiro Júnior JI, da Silveira WB. Isolation of a new Papiliotrema laurentii strain that displays capacity to achieve high lipid content from xylose. 3 Biotech 2020; 10:382. [PMID: 32802724 DOI: 10.1007/s13205-020-02373-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
In this work, we isolated and selected oleaginous yeasts from rock field soils from two National Parks in Brazil (Caparaó and Serra dos Órgãos) with the potential to accumulate oil from xylose, the main pentose sugar found in lignocellulosic biomass. From the 126 isolates, two were selected based on their lipid contents. They were taxonomically identified as Papiliotrema laurentii (UFV-1 and UFV-2). Of the two, P. laurentii UFV-1 was selected as the best lipid producer. Under unoptimized conditions, lipid production by P. laurentii UFV-1 was higher in glucose than in xylose. To improve its lipid production from xylose, we applied response surface methodology (RSM) with a face-centered central composite design (CCF). We evaluated the effects of agitation rate, initial cell biomass (OD600), carbon/nitrogen ratio (C/N ratio) and pH on lipid production. P. laurentii UFV-1 recorded the highest lipid content, 63.5% (w/w) of the cell dry mass, under the following conditions: C/N ratio = 100:1, pH value = 7.0, initial OD600 = 0.8 and agitation = 300 rpm. Under these optimized conditions, biomass, lipid titer and volumetric lipid productivity were 9.31 g/L, 5.90 g/L and 0.082 g/L.h, respectively. Additionally, we determined the fatty acid composition of P. laurentii UFV-1 as follows: C14:0 (0.5%), C16:0 (28.4-29.4%), C16:1 (0.2%), C18:0 (9.5-11%), C18:1 (58.6-60.5%), and C20:0 (0.7-0.8%). Based on this composition, the predicted properties of biodiesel showed that P. laurentii UFV-1 oil is suitable for use as feedstock in biodiesel production.
Collapse
Affiliation(s)
- Nívea Moreira Vieira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Raquel Cristina Vieira Dos Santos
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Vanessa Kely de Castro Germano
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Rafaela Zandonade Ventorim
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Eduardo Luís Menezes de Almeida
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Fernando Augusto da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | | | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| |
Collapse
|
32
|
Diwan B, Gupta P. A Deuteromycete Isolate Geotrichum candidum as Oleaginous Cell Factory for Medium-Chain Fatty Acid-Rich Oils. Curr Microbiol 2020; 77:3738-3749. [PMID: 32778944 DOI: 10.1007/s00284-020-02155-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Single cell oils (SCO) are oils derived from microorganisms which have potential to hyperaccumulate intracellular lipids (called oleaginous) under some essential nutrient (nitrogen, phosphorous or sometimes sulphur) starvation and an excess of carbon. The present work investigates the influence of these key parameters (for triggering oleaginicity), i.e. carbon (C) and nitrogen (N) on oleaginous behaviour of an oleaginous isolate, with the objective of improving the lipid content and obtaining oils of applicative interest. Eleven yeasts were isolated from rotten fruits and a unique yeast from rotten apple was screened on the basis of its ~ 20% (of dry mass) lipid content (LC), trademark of oleaginicity under nitrogen-stressed culture conditions. Subsequent investigation on influence of C, N and w/w ratio of carbon source concentration (Cs) to nitrogen source concentration (Ns) was conducted on this isolate. The isolate was identified as a Deuteromycete-Geotrichum candidum. 4.8 g/l was found to be minimum N concentration and glucose as suitable C source for optimum balance between biomass and lipid content. The highest LC of 73.6% (172.5% higher compared to 27% LC at Cs/Ns 80/4.8) was obtained at Cs/Ns 150/4.8 with a lipid coefficient of 8.7 (g lipid/100 g substrate). While remarkably higher production economy (lipid coefficient of 28.45) was noted at Cs/Ns 100/4.8 with significant LC of 54.4% (~ 100% higher than at Cs/Ns 80/4.8). The derived oils were predominantly rich in medium-chain fatty acids (MCFA)-caprylic acid, rare in plant oils. G. candidum is a previously referred oleaginous species; however, for the first time this study illustrates its detailed oleaginous behaviour and lipid compositional characteristics with varying nutritional parameters. The work is a progressive contribution towards current and upcoming researches in field of SCOs. Compositional characteristics of derived oils, make it an important candidate for potential medical and nutritional applications in future.
Collapse
Affiliation(s)
- Batul Diwan
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| |
Collapse
|
33
|
Akkermans V, Verstraete R, Braem C, D'aes J, Dries J. Mannosylerythritol Lipid Production from Oleaginous Yeast Cell Lysate byMoesziomyces aphidis. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2019.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Veerle Akkermans
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| | - Ruben Verstraete
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Caroline Braem
- Department of Industrial Sciences and Technology, Karel de Grote University College, Hoboken, Belgium
| | - Jolien D'aes
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| | - Jan Dries
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
34
|
Hackenschmidt S, Bracharz F, Daniel R, Thürmer A, Bruder S, Kabisch J. Effects of a high-cultivation temperature on the physiology of three different Yarrowia lipolytica strains. FEMS Yeast Res 2020; 19:5586564. [PMID: 31605534 DOI: 10.1093/femsyr/foz068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the increasing relevance, ranging from academic research to industrial applications, only a limited number of non-conventional, oleaginous Yarrowia lipolytica strains are characterized in detail. Therefore, we analyzed three strains in regard to their metabolic and physiological properties, especially with respect to important characteristics of a production strain. By investigating different cultivation conditions and media compositions, similarities and differences between the distinct strain backgrounds could be derived. Especially sugar alcohol production, as well as an agglomeration of cells were found to be connected with growth at high temperatures. In addition, sugar alcohol production was independent of high substrate concentrations under these conditions. To investigate the genotypic basis of particular traits, including growth characteristics and metabolite concentrations, genomic analysis were performed. We found sequence variations for one third of the annotated proteins but no obvious link to all phenotypic features.
Collapse
Affiliation(s)
- S Hackenschmidt
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - F Bracharz
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - R Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - A Thürmer
- MF 2: Genomsequenzierung, Robert Koch Institute Berlin, Seestrasse 10, 13353 Berlin, Germany
| | - S Bruder
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - J Kabisch
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| |
Collapse
|
35
|
A Review on Insights for Green Production of Unconventional Protein and Energy Sources Derived from the Larval Biomass of Black Soldier Fly. Processes (Basel) 2020. [DOI: 10.3390/pr8050523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review is to reveal the lipid and protein contents in black soldier fly larvae (BSFL) for the sustainable production of protein and energy sources. It has been observed from studies in the literature that the larval lipid and protein contents vary with the rearing conditions as well as the downstream processing employed. The homogenous, heterogenous and microbial-treated substrates via fermentation are used to rear BSFL and are compared in this review for the simultaneous production of larval protein and biodiesel. Moreover, the best moisture content and the aeration rate of larval feeding substrates are also reported in this review to enhance the growth of BSFL. As the downstream process after harvesting starts with larval inactivation, various related methods have also been reviewed in relation to its impact on the quality/quantity of larval protein and lipids. Subsequently, the other downstream processes, namely, extraction and transesterification to biodiesel, are finally epitomized from the literature to provide a comprehensive review for the production of unconventional protein and lipid sources from BSFL feedstock. Incontrovertibly, the review accentuates the great potential use of BSFL biomass as a green source of protein and lipids for energy production in the form of biodiesel. The traditional protein and energy sources, preponderantly fishmeal, are unsustainable naturally, pressingly calling for immediate substitutions to cater for the rising demands. Accordingly, this review stresses the benefits of using BSFL biomass in detailing its production from upstream all the way to downstream processes which are green and economical at the same time.
Collapse
|
36
|
Orange peel waste-based liquid medium for biodiesel production by oleaginous yeasts. Appl Microbiol Biotechnol 2020; 104:4617-4628. [PMID: 32236680 DOI: 10.1007/s00253-020-10579-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/28/2020] [Accepted: 03/22/2020] [Indexed: 12/18/2022]
Abstract
Orange peel waste (OPW), the primary byproduct of the juice extraction process, is annually generated in massive amounts (21 Mton), and its aqueous extraction in biorefining operations yields a liquid fraction, referred to as orange peel extract (OPE). Although OPE contains significant amounts of easily assimilable carbohydrates, such as fructose, glucose, and sucrose, no investigations have been conducted yet to assess its possible use in biodiesel production by oleaginous yeasts. Consequently, the objective of the present study was to assess whether OPE might act as the basis of a liquid medium for microbial lipid production. A screening conducted with 18 strains of oleaginous yeasts in shaken flask on the OPE-based medium showed that Rhodosporidium toruloides NRRL 1091 and Cryptococcus laurentii UCD 68-201 gave the best results in terms of lipid production (5.8 and 4.5 g L-1, respectively) and accumulation (77 and 47% on a dry matter basis, respectively). The subsequent scale transfer of the process to a 3-L STR operated in batch mode halved the time required to reach the lipid peak with the ensuing increase in volumetric productivities in R. toruloides NRRL 1091 (3646 mg L-1 day-1) and C. laurentii UCD 68-201 (2970.7 mg L-1 day-1). The biodiesel yields from the lipids of the former and the latter strain were 36.9 and 31.9%, respectively. Based on multivariate analysis of fatty acid methyl ester compositions, the lipids from the former and the latter strain were highly resembling those of Jatropha and palm oils, two commonly used feedstocks for biodiesel manufacturing.
Collapse
|
37
|
Yaguchi A, Franaszek N, O'Neill K, Lee S, Sitepu I, Boundy-Mills K, Blenner M. Identification of oleaginous yeasts that metabolize aromatic compounds. J Ind Microbiol Biotechnol 2020; 47:801-813. [PMID: 32221720 DOI: 10.1007/s10295-020-02269-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
The valorization of lignin is critical for the economic viability of the bioeconomy. Microbial metabolism is advantageous for handling the myriad of aromatic compounds resulting from lignin chemical or enzymatic depolymerization. Coupling aromatic metabolism to fatty acid biosynthesis makes possible the production of biofuels, oleochemicals, and other fine/bulk chemicals derived from lignin. Our previous work identified Cutaneotrichosporon oleaginosus as a yeast that could accumulate nearly 70% of its dry cell weight as lipids using aromatics as a sole carbon source. Expanding on this, other oleaginous yeast species were investigated for the metabolism of lignin-relevant monoaromatics. Thirty-six oleaginous yeast species from the Phaff yeast collection were screened for growth on several aromatic compounds representing S-, G-, and H- type lignin. The analysis reported in this study suggests that aromatic metabolism is largely segregated to the Cutaenotrichosporon, Trichosporon, and Rhodotorula clades. Each species tested within each clade has different properties with respect to the aromatics metabolized and the concentrations of aromatics tolerated. The combined analysis suggests that Cutaneotrichosporon yeast are the best suited to broad spectrum aromatic metabolism and support its development as a model system for aromatic metabolism in yeast.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Nicole Franaszek
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Kaelyn O'Neill
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Stephen Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Irnayuli Sitepu
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA.
| |
Collapse
|
38
|
Lipid Production from Sugarcane Top Hydrolysate and Crude Glycerol with Rhodosporidiobolus fluvialis using a Two-Stage Batch-Cultivation Strategy with Separate Optimization of Each Stage. Microorganisms 2020; 8:microorganisms8030453. [PMID: 32210119 PMCID: PMC7143989 DOI: 10.3390/microorganisms8030453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/23/2022] Open
Abstract
Lipids from oleaginous microorganisms, including oleaginous yeasts, are recognized as feedstock for biodiesel production. A production process development of these organisms is necessary to bring lipid feedstock production up to the industrial scale. This study aimed to enhance lipid production of low-cost substrates, namely sugarcane top and biodiesel-derived crude glycerol, by using a two-stage cultivation process with Rhodosporidiobolus fluvialis DMKU-SP314. In the first stage, sugarcane top hydrolysate was used for cell propagation, and in the second stage, cells were suspended in a crude glycerol solution for lipid production. Optimization for high cell mass production in the first stage, and for high lipid production in the second stage, were performed separately using a one-factor-at-a-time methodology together with response surface methodology. Under optimum conditions in the first stage (sugarcane top hydrolysate broth containing; 43.18 g/L total reducing sugars, 2.58 g/L soy bean powder, 0.94 g/L (NH4)2SO4, 0.39 g/L KH2PO4 and 2.5 g/L MgSO4 7H2O, pH 6, 200 rpm, 28 °C and 48 h) and second stage (81.54 g/L crude glycerol, pH 5, 180 rpm, 27 °C and 196 h), a high lipid concentration of 15.85 g/L, a high cell mass of 21.07 g/L and a high lipid content of 73.04% dry cell mass were obtained.
Collapse
|
39
|
Sitepu I, Enriquez L, Nguyen V, Fry R, Simmons B, Singer S, Simmons C, Boundy-Mills KL. Ionic Liquid Tolerance of Yeasts in Family Dipodascaceae and Genus Wickerhamomyces. Appl Biochem Biotechnol 2020; 191:1580-1593. [PMID: 32185613 DOI: 10.1007/s12010-020-03293-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
Abstract
In previous studies of ionic liquid (IL) tolerance of numerous species of ascomycetous yeasts, two strains of Wickerhamomyces ciferrii and Galactomyces candidus had unusually high tolerance in media containing up to 5% (w/v) of the 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]). The study aimed at investigating whether additional strains of these species, and additional species in the Dipodascaceae family, also possess IL tolerance, and to compare sensitivity to the acetate and chloride versions of the ionic liquid. Fifty five yeast strains in the family Dipodascaceae, which encompasses genera Galactomyces, Geotrichum, and Dipodascus, and seven yeast strains of species Wickerhamomyces ciferrii were tested for ability to grow in laboratory medium containing no IL, 242 mM [C2C1Im][OAc], or 242 mM [C2C1Im]Cl, and in IL-pretreated switchgrass hydrolysate. Many yeasts exhibited tolerance of one or both ILs, with higher tolerance of the chloride anion than of the acetate anion. Different strains of the same species exhibited varying degrees of IL tolerance. Galactomyces candidus, UCDFSTs 52-260, and 50-64, had exceptionally robust growth in [C2C1Im][OAc], and also grew well in the switchgrass hydrolysate. Identification of IL tolerant and IL resistant yeast strains will facilitate studies of the mechanism of IL tolerance, which could include superior efflux, metabolism or exclusion.
Collapse
Affiliation(s)
- Irnayuli Sitepu
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Lauren Enriquez
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Valerie Nguyen
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Russell Fry
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Blake Simmons
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Steve Singer
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Christopher Simmons
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kyria L Boundy-Mills
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
40
|
Miranda C, Bettencourt S, Pozdniakova T, Pereira J, Sampaio P, Franco-Duarte R, Pais C. Modified high-throughput Nile red fluorescence assay for the rapid screening of oleaginous yeasts using acetic acid as carbon source. BMC Microbiol 2020; 20:60. [PMID: 32169040 PMCID: PMC7071767 DOI: 10.1186/s12866-020-01742-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background Over the last years oleaginous yeasts have been studied for several energetic, oleochemical, medical and pharmaceutical purposes. However, only a small number of yeasts are known and have been deeply exploited. The search for new isolates with high oleaginous capacity becomes imperative, as well as the use of alternative and ecological carbon sources for yeast growth. Results In the present study a high-throughput screening comprising 366 distinct yeast isolates was performed by applying an optimised protocol based on two approaches: (I) yeast cultivation on solid medium using acetic acid as carbon source, (II) neutral lipid estimation by fluorimetry using the lipophilic dye Nile red. Conclusions Results showed that, with the proposed methodology, the oleaginous potential of yeasts with broad taxonomic diversity and variety of growth characteristics was discriminated. Furthermore, this work clearly demonstrated the association of the oleaginous yeast character to the strain level, contrarily to the species-level linkage, as usually stated.
Collapse
Affiliation(s)
- Catarina Miranda
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Sara Bettencourt
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Tatiana Pozdniakova
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Joana Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Paula Sampaio
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal.
| | - Célia Pais
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
41
|
Fungi (Mold)-Based Lipid Production. Methods Mol Biol 2020. [PMID: 31148121 DOI: 10.1007/978-1-4939-9484-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
There is an increasing need for the development of alternative energy sources with a focus on reducing greenhouse gas emissions and striving toward a sustainable economy. Bioethanol and biodiesel are currently the primary choices of alternative transportation fuels. At present, biodiesel is not competitive with conventional fuel due to its high price, and the only way to compete with conventional fuel is to improve the quality, reduce the costs, and coproduce value-added products. With the high demand for lipids in the energy sector and other industrial applications, microbial lipids accumulated from microorganisms, especially oleaginous fungi and yeasts have been the important topic of many recent research studies. This chapter summarizes the current status of knowledge and technology about lipid production by oleaginous fungi and yeasts for biofuel applications and other value-added products. The chapter focuses on several aspects such as the most promising oleaginous strains, strain development, improvement of lipid production, methods and protocols to cultivate oleaginous fungi, substrate utilization, fermentation process design, and downstream processing. The feasibility and challenges during the large-scale commercial production of microbial lipids as fuel sources are also discussed. It provides an overview of microbial lipid production biorefinery and also future development directions.
Collapse
|
42
|
Abstract
Oleaginous microbes, which contain over 20% intracellular lipid, predominantly triacylglycerols (TG), by dry weight, have been discovered to have high oil content by many different protocols, ranging from simple staining to more complex chromatographic methods. In our laboratory, a methodical process was implemented to identify high oil yeasts, designed to minimize labor while optimizing success in identifying high oil strains among thousands of candidates. First, criteria were developed to select candidate yeast strains for analysis. These included observation of buoyancy of the yeast cell mass in 20% glycerol, and phylogenetic placement near known oleaginous species. A low-labor, semiquantitative Nile red staining protocol was implemented to screen numerous yeast cultures for high oil content in 96-well plates. Then, promising candidates were selected for more quantitative analysis. A more labor-intensive and quantitative gravimetric assay was implemented that gave consistent values for intracellular oil content for a broad range of yeast species. Finally, an LC-MS protocol was utilized to quantify and identify yeast triacylglycerols. This progressive approach was successful in identifying 30 new oleaginous yeast species, out of over 1000 species represented in the Phaff Yeast Culture Collection.
Collapse
|
43
|
Maza DD, Viñarta SC, Su Y, Guillamón JM, Aybar MJ. Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J Biotechnol 2020; 310:21-31. [DOI: 10.1016/j.jbiotec.2020.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/26/2022]
|
44
|
Manipulation of Culture Conditions: Tool for Correlating/Improving Lipid and Carotenoid Production by Rhodotorula glutinis. Processes (Basel) 2020. [DOI: 10.3390/pr8020140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The coproduction of lipid and carotenoid by red yeasts in one cycle is more convenient and economical for the industrial sectors, while the kinetics correlation between both products under different culture conditions has been scarcely studied. This study is aiming to correlate the impact of different carbon sources, carbon to phosphorus ratio (C/P), temperature, aeration, pH, and metals on dry cell weight, lipid (GC and fluorescence microscope), and carotenoid (HPLC) production by Rhodotorula glutinis, and applying a novel feeding approach using a 5 L bioreactor to enhance carotenoid and unsaturated fatty acid production by R. glutinis. Whatever the culture condition is, the reversible correlation between lipid and carotenoid production was detected. Remarkably, when adding 0.1 mM BaCl2, cellular lipid was significantly increased 14% more than the control, with 79.3% unsaturated fatty acid (46% C18:2 and C18:3) and 50% γ-carotene, while adding 1 mM NiSO4, cellular carotenoid was enhanced around 53% than the control (torulene 88%) with 81% unsaturated fatty acid (61% oleic acid). Excitingly, 68.8 g/l biomass with 41% cellular lipid (79% unsaturated fatty acid) and 426 µgpigment/gdcw cellular carotenoid (29.3 mg/L) (71% torulene) were obtained, when the pH-temperature dual controlled process combined with metallo-sulfo-phospho-glucose feeding approach in the 5 L bioreactor during the accumulation phase was conducted. This is the first study on the kinetic correlation between lipid and carotenoid under different C/P ratio and the dual effect of different metals like NiSO4 on lipid and carotenoid production by red oleaginous yeasts, which in turn significant for enhancing the coproduction of lipid and carotenoid by R. glutinis.
Collapse
|
45
|
Magdalena JA, González-Fernández C. Microalgae Biomass as a Potential Feedstock for the Carboxylate Platform. Molecules 2019; 24:molecules24234404. [PMID: 31810301 PMCID: PMC6930456 DOI: 10.3390/molecules24234404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Volatile fatty acids (VFAs) are chemical building blocks for industries, and are mainly produced via the petrochemical pathway. However, the anaerobic fermentation (AF) process gives a potential alternative to produce these organic acids using renewable resources. For this purpose, waste streams, such as microalgae biomass, might constitute a cost-effective feedstock to obtain VFAs. The present review is intended to summarize the inherent potential of microalgae biomass for VFA production. Different strategies, such as the use of pretreatments to the inoculum and the manipulation of operational conditions (pH, temperature, organic loading rate or hydraulic retention time) to promote VFA production from different microalgae strains, are discussed. Microbial structure analysis using microalgae biomass as a substrate is pointed out in order to further comprehend the roles of bacteria and archaea in the AF process. Finally, VFA applications in different industry fields are reviewed.
Collapse
|
46
|
Llamas M, Magdalena JA, González-Fernández C, Tomás-Pejó E. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation. Biotechnol Bioeng 2019; 117:238-250. [PMID: 31544974 DOI: 10.1002/bit.27180] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Microbial oils are proposed as a suitable alternative to petroleum-based chemistry in terms of environmental preservation. These oils have traditionally been studied using sugar-based feedstock, which implies high costs, substrate limitation, and high contamination risks. In this sense, low-cost carbon sources such as volatile fatty acids (VFAs) are envisaged as promising building blocks for lipid biosynthesis to produce oil-based bioproducts. VFAs can be generated from a wide variety of organic wastes through anaerobic digestion and further converted into lipids by oleaginous yeasts (OYs) in a fermentation process. These microorganisms can accumulate in the form of lipid bodies, lipids of up to 60% wt/wt of their biomass. In this context, OY is a promising biotechnological tool for biofuel and bioproduct generation using low-cost VFA media as substrates. This review covers recent advances in microbial oil production from VFAs. Production of VFAs via anaerobic digestion processes and the involved metabolic pathways are reviewed. The main challenges as well as recent approaches for lipid overproduction are also discussed.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| | | | | | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| |
Collapse
|
47
|
Godara A, Rodriguez MAG, Weatherston JD, Peabody GL, Wu HJ, Kao KC. Beneficial mutations for carotenoid production identified from laboratory-evolved Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2019; 46:1793-1804. [PMID: 31595456 DOI: 10.1007/s10295-019-02241-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/26/2019] [Indexed: 01/26/2023]
Abstract
Adaptive laboratory evolution (ALE) is a powerful tool used to increase strain fitness in the presence of environmental stressors. If production and strain fitness can be coupled, ALE can be used to increase product formation. In earlier work, carotenoids hyperproducing mutants were obtained using an ALE strategy. Here, de novo mutations were identified in hyperproducers, and reconstructed mutants were explored to determine the exact impact of each mutation on production and tolerance. A single mutation in YMRCTy1-3 conferred increased carotenoid production, and when combined with other beneficial mutations led to further increased β-carotene production. Findings also suggest that the ALE strategy selected for mutations that confer increased carotenoid production as primary phenotype. Raman spectroscopy analysis and total lipid quantification revealed positive correlation between increased lipid content and increased β-carotene production. Finally, we demonstrated that the best combinations of mutations identified for β-carotene production were also beneficial for production of lycopene.
Collapse
Affiliation(s)
- Avinash Godara
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA. .,Department of Chemical and Materials Engineering, San Jose State University, One Washington Square, San Jose, CA, 95129, USA.
| |
Collapse
|
48
|
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci Rep 2019; 9:13370. [PMID: 31527678 PMCID: PMC6746873 DOI: 10.1038/s41598-019-48863-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.
Collapse
|
49
|
Papadaki A, Kopsahelis N, Mallouchos A, Mandala I, Koutinas AA. Bioprocess development for the production of novel oleogels from soybean and microbial oils. Food Res Int 2019; 126:108684. [PMID: 31732046 DOI: 10.1016/j.foodres.2019.108684] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
This study presents the production of novel oleogels via circular valorisation of food industry side streams. Sugarcane molasses and soybean processing side streams (i.e. soybean cake) were employed as fermentation feedstocks for the production of microbial oil. Fed-batch bioreactor fermentations carried out by the oleaginous yeast Rhodosporidium toruloides led to the production of 36.9 g/L total dry weight with an intracellular oil content of 49.8% (w/w) and 89.4 μg/g carotenoids. The carotenoid-rich microbial oil and soybean oil were evaluated as base oils for the production of wax-based oleogels. The wax esters, used as oleogelators, were produced via enzymatic catalysis, using microbial oil or soybean fatty acid distillate as raw materials. All oleogels presented a gel-like behaviour (G' > G″). However, the highest G' was determined for the oleogel produced from soybean oil and microbial oil-wax esters, which indicated a stronger network. Thermal analysis showed that this oleogel had a melting temperature profile up to 35 °C, which is favorable for applications in the confectionery industry. Also, texture analysis demonstrated that soybean oil-microbial oil wax oleogel was stable (1.9-2.2 N) within 30-days storage period. This study showed the potential of novel oleogels production through the development of bioprocesses based on the valorisation of various renewable resources.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
50
|
Production of single cell oil by using cassava peel substrate from oleaginous yeast Rhodotorula glutinis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|