1
|
Enhancing Fe-C micro-electrolysis by coupling MF with electrolyte solution: Mechanism and application. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Yao J, Li W, Ou D, Lei L, Asif M, Liu Y. Performance and granular characteristics of salt-tolerant aerobic granular reactors response to multiple hypersaline wastewater. CHEMOSPHERE 2021; 265:129170. [PMID: 33302196 DOI: 10.1016/j.chemosphere.2020.129170] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 05/12/2023]
Abstract
Aerobic granular sludge (AGS) technology has been recognized as a promising alternative to alleviate the osmotic stress of hypersaline wastewater. However, the response of AGS process to composite hypersaline wastewater on removal performance and populations was yet to be understood. In this work, two sequenced batch reactors were operated in parallel in absence (R0) and presence (R1) of high concentration sulfate as proxy for single and mixed salts (30 g salt·L-1) respectively. Results demonstrated that the presence of sulfate in hypersaline wastewater enhanced chemical oxygen demand (COD) and total nitrogen (TN) removals of 95.3% and 65.5% respectively with lower accumulations of nitrite. High-throughput 16 S rRNA gene sequencing technique elucidated that Denitromonas (31.6%) and Xanthomarina (17.0%) were the more dominant genera in AGS response to mixed salts with high sulfate and laid the biological basis for strengthening removal performance. The enrichment of halophilic Luteococcus (23.5%) in the AGS surface indicated the potential role of mixed salts in shaping the physical properties and surface population structure of AGS. Our work could facilitate the potential applications of AGS technology for industrial hypersaline wastewater treatment with complicated compositions.
Collapse
Affiliation(s)
- Jinchi Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Dong Ou
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Lei Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Asif
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
3
|
Ramos C, Suárez-Ojeda ME, Carrera J. Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater. BIORESOURCE TECHNOLOGY 2015; 198:844-851. [PMID: 26457833 DOI: 10.1016/j.biortech.2015.09.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The effect of salinity over granular biomass treating a mixture of aromatic compounds (phenol, o-cresol and p-nitrophenol) was evaluated in a continuous airlift reactor. To mimic an industrial wastewater, increasing concentrations (from 2.0 to 29.0 g salts L(-1)) of a mixture of salts (MgSO4, NaCl, KCl, CaCl2 and NaHCO3) were introduced in the influent. The gradual salinity increase led to a good acclimation of the biomass obtaining complete biodegradation of the aromatic compounds and no accumulation of metabolic intermediates. However, a deterioration of the morphology of aerobic granules with a complete loss of granulation after 125 days was produced at 29.0 g salts L(-1). At that moment, anaerobic granules were added to promote granulation and after 50 days new aerobic granules were formed. These new aerobic granules remained stable for more than 100 days at the highest salinity condition with 100% removal of the mixture of aromatic compounds.
Collapse
Affiliation(s)
- Carlos Ramos
- GENOCOV Research Group, Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|