1
|
Al-Qwairi FO, Shaheen Shah S, Shabi AH, Khan A, Aziz MA. Stainless Steel Mesh in Electrochemistry: Comprehensive Applications and Future Prospects. Chem Asian J 2024; 19:e202400314. [PMID: 39014972 DOI: 10.1002/asia.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Stainless steel mesh (SSM) has emerged as a cornerstone in electrochemical applications owing to its exemplary versatility, electrical conductivity, mechanical robustness, and corrosion resistance. This state-of-the-art review delves into the diverse roles of SSM across a spectrum of electrochemical domains, including energy conversion and storage devices, water treatment technologies, electrochemical sensors, and catalysis. We meticulously explore its deployment in supercapacitors, batteries, and fuel cells, highlighting its utility as a current collector, electrode, and separator. The review further discusses the critical significance of SSM in water treatment processes, emphasizing its efficacy in supporting membranes and facilitating electrocoagulation, as well as its novel uses in electrochemical sensing and catalysis, which include electrosynthesis and bioelectrochemistry. Each section delineates the recent advancements, identifies the inherent challenges, and suggests future directions for leveraging SSM in electrochemical technologies. This comprehensive review showcases the current state of knowledge and articulates the novel integration of SSM with emerging materials and technologies, thereby establishing a new paradigm for sustainable and efficient electrochemical applications. Through critical analysis and insightful recommendations, this review positions itself as a seminal contribution, paving the way for researchers and practitioners to harness the full potential of SSM in advancing the electrochemistry frontiers.
Collapse
Affiliation(s)
- Fatima Omar Al-Qwairi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A H Shabi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Gao L, Zhao Y, Wang Z, Zhang Y, Ming J, Sun X, Ni SQ. Seasonal and distance-decay patterns of surface sediments microbial nitrogen and sulfur cycling linkage in the eastern coast of China. MARINE POLLUTION BULLETIN 2024; 201:116169. [PMID: 38428046 DOI: 10.1016/j.marpolbul.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
The surface sediments as a repository of pelagic environment changes and microbial community structural succession tend to have a profound effect on global and local nitrogen and sulfur cycling. In this study, analysis of sediment samples collected from the Bohai Sea, Yellow Sea, and north of the East China Seas (BYnECS) revealed longitude, latitude, depth, and chlorophyll had the strongest influence on microbial community structure (p-values < 0.005). A clear distance-decay pattern was exhibited in BYnECS. The result of co-occurrence network modularization implied that the more active pathway in winter was thiosulfate reduction and nitrate reduction, while in summer it was nitrification. The potential functional genes were predicted in microbial communities, and the most dominant genes were assigned to assimilatory sulfur reduction, denitrification, and dissimilatory nitrate reduction. This study innovatively explored the potential relationships between nitrogen and sulfur cycling genes of these three sea regions in the China Sea.
Collapse
Affiliation(s)
- Linjie Gao
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Yiyi Zhao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, China
| | - Yong Zhang
- Shenzhen Xinbaoying Technology Co., Ltd, Guangdong, China
| | - Jie Ming
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Xiaojie Sun
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Shou-Qing Ni
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China.
| |
Collapse
|
3
|
Varma SK, Singh R. SRB-based bioelectrochemical system: A potential multipollutant combatant for enhanced landfill waste stabilization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:1-14. [PMID: 36202043 DOI: 10.1016/j.wasman.2022.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Due to the lower proportion of organic matter and higher toxicity of the aged landfill, most of the advanced treatment technologies are not effective from economic, environmental, and social perspectives. This study evaluates the potential of sulfate-reducing bacteria (SRB) based bioelectrochemical-system (BES) in the decontamination of landfill wastes by reducing GHGs emissions and levels of soluble pollutants. The landfill waste (solid/leachate) collected from the Pirana Landfill site was assessed for economical long-term treatment and scaling up the feasibility of the designed system. The present system demonstrated significant improvement in volumetric hydrogen production of 3.1:1 (H2:CH4) by suppressing methanogenesis with a significant reduction in heavy metals concentration and other organic components. Despite being amended with 0.1 N ammonia, the treated leachate level of NO3 (2.350 ± 1.077 mg/L) was reduced by 5.3 times, hence reducing further groundwater pollution from landfill leaching. The BES-treated solid waste was more stabilized as shown by a fivefold increase in surface area and can be potentially applied for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude with differences in magnitudes for both leachate and solid waste supported the on-site applicability of BES treatment. Concerning the affinity in various treatment systems, the dendrogram clearly showed Ca and Fe placed far from each other (3506.08), in comparison to Fe and Mg (1186.6), followed by Fe and Cu (1544.6). Voltammograms proved the efficacy of the enriched electrochemically active bacteria (EAB), to support the treatment of landfill solid waste and leachate sustainably.
Collapse
Affiliation(s)
- Sushma K Varma
- School of Environment & Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rajesh Singh
- School of Environment & Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E. Electrosorption of phenolic compounds from olive mill wastewater: Mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128480. [PMID: 35183056 DOI: 10.1016/j.jhazmat.2022.128480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Olive mill wastewater (OMWW) is an environmentally critical effluent, specifically due to its high content of phenolic compounds (PCs), which are hazardous due to their antimicrobial activities in water. However, their properties have good health effects at suitable doses. For the first time, the electrosorption of PCs from actual OMWW has been proposed for their possible recovery as value-added compounds, while decontaminating OMWW. A bio-sourced alginate-activated carbon (AC) fixed-bed electrode was prepared based on the reuse of olive pomace solid waste as powdered AC. At the optimal AC content (1% w/v), the internal ohmic drop voltage was lower (2.26 V) and the mass transport coefficient was higher (9.7 10-5 m s-1) along with the diffusivity (7.3 10-9 m2 s-1), which led to enhanced electrosorption rates. Afterward, an optimal electrode potential was obtained (-1.1 V vs. Ag/AgCl), while higher voltages led to faradaic reactions. Moreover, the adsorption capacity was lower (123 mg g-1) than that of electrosorption (170 mg g-1) and was even higher (307 mg g-1) with actual effluents. This was probably due to the influence of electromigration, which was confirmed by new models that could predict the electrosorption kinetics well considering mass transport and acid dissociation constants.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | |
Collapse
|
5
|
Arulmani SRB, Dai J, Li H, Chen Z, Sun W, Zhang H, Yan J, Kandasamy S, Xiao T. Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells. CHEMOSPHERE 2022; 291:132754. [PMID: 34798109 DOI: 10.1016/j.chemosphere.2021.132754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Environmental toxicity of antimony (Sb) is significantly increased through the widespread industrial application. The extended release of Sb above the regulatory level became a risk to humans habituated in the ecosystem. Conventional methods to remediate Sb demand high energy or resource input, which further leads to secondary pollution. The bio-electrochemical system offers a promising bioremediation strategy to remove or reduce toxic heavy metals. Thus, this research explores the possibilities of simultaneous metal sulfide (MeS) precipitation and electricity production using a full biological Microbial fuel cell (MFC). A non-conventional sulfate-reducing bacteria (SRB) Citrobacter freundii SR10 was used for this investigation, where the MFC was operated for lactate utilization in the bio-anode and Sb reduction at the bio-cathode. This study observed 81% of coulombic efficiency (bio-anode) and 97% of sulfate reduction with 99.3% Sb (V) reduction (bio-cathode), and it was concluded that the MeS precipitation entirely depends on sulfide concentration via SR10 sulfate reduction. The MFC-SR10 offers a maximum power density of 1652.9 ± 32.1 mW/m3, and their performance was depicted using cyclic voltammetry and electrochemical impedance spectroscopy. The Sb reduction was evaluated through fluorescence spectroscopy, and the Sb (V) MeS precipitation was confirmed as stibnite (Sb2S3) by Raman spectroscopy and X-ray photoelectron spectroscopy. Furthermore, the matured anodic and cathodic biofilm formation was confirmed by Scanning electron microscopy with Energy-dispersive X-ray spectroscopy. Thus the MFC with SRB bio-cathode can be used as an alternative to simultaneously remove sulfate and Sb from the wastewater with electricity production.
Collapse
Affiliation(s)
- Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Junxi Dai
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Han Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhenxin Chen
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, PR China.
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Sabariswaran Kandasamy
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 602105, Tamil Nadu, India
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
6
|
Ramanaiah S, Cordas CM, Matias SC, Reddy M, Leitão JH, Fonseca LP. Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00693. [PMID: 34917493 PMCID: PMC8666517 DOI: 10.1016/j.btre.2021.e00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 10/25/2022]
Abstract
In the present work, power generation and substrate removal efficiencies of long-term operated microbial fuel cells, containing abiotic cathodes and biocathodes, were evaluated for 220 days. Among the two microbial fuel cell (MFC) types, the one containing biocathode showed higher power density (54 mW/m2), current density (122 mA/m2) coulombic efficiency (33%), and substrate removal efficiency (94%) than the abiotic cathode containing MFC. Voltammetric analysis also witnessed higher and sustainable electron discharge for the MFC with biocathode, when compared with the abiotic cathode MFC. Over the tested period, both MFC have shown a cell voltage drop, after 150 and 165, days, for the MFC with biocathode and abiotic cathodes, respectively. Polymerase chain reaction (PCR) based restriction fragment length polymorphism (RFLP) analysis identified 281 clones. Bacteria belonging to Acinetobacter, Acidovorax, Pseudomonas and Burkholderia were observed in the abiotic cathode MFC. Bacteria belonging to Geobacter, Cupriavidus and Acidobacteria were observed in the biocathode MFC. Almost similar types of archaea (Methanosarcinales, Methanolinea, Nitrososphaera and Methanomicrobiales) were observed in both MFCs.
Collapse
Affiliation(s)
- S.V. Ramanaiah
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 76, Lenin prospekt, Chelyabinsk, 454080, Russian Federation
| | - Cristina M. Cordas
- LAQV- REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Sara C. Matias
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
| | - M.Venkateswar Reddy
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute,110 8th Street, Troy, NY 12180, USA
| | - Jorge Humberto Leitão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
| | - Luis P. Fonseca
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
| |
Collapse
|
7
|
Sharma M, Nandy A, Taylor N, Venkatesan SV, Ozhukil Kollath V, Karan K, Thangadurai V, Tsesmetzis N, Gieg LM. Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121845. [PMID: 31862354 DOI: 10.1016/j.jhazmat.2019.121845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are organic pollutants that require remediation due to their detrimental impact on human and environmental health. In this study, we used a novel approach of sequestering a model PAH, phenanthrene, onto a solid carbon matrix bioanode in a microbial fuel cell (MFC) to assess its biodegradation coupled with power generation. Here, the bioanode serves as a site for enrichment of electroactive and hydrocarbon-degrading microorganisms, which can simultaneously act to biodegrade a pollutant and generate power. Carbon cloth electrodes loaded with two rates of phenanthrene (2 and 20 mg cm-2) were compared using dual chamber MFCs that were operated for 50 days. The lower loading rate of 2 mg cm-2 was most efficient in the degradation of phenanthrene and had higher power production capacities (37 mW m-2) as compared to the higher loading rate of 20 mg cm-2 (power production of 19.2 mW m-2). FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed a depletion in absorbance peak signals associated with phenanthrene. Microbes known to have electroactive properties or phenanthrene biodegradation abilities like Pseudomonas, Rhodococcus, Thauera and Ralstonia were enriched over time in the MFCs, substantiating the electrochemical and FTIR analyses. The MFC approach taken here thus offers great promise towards PAH bioelectroremediation.
Collapse
Affiliation(s)
- Mohita Sharma
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Arpita Nandy
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Nicole Taylor
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Senthil Velan Venkatesan
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Venkataraman Thangadurai
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Nicolas Tsesmetzis
- Shell International Exploration and Production Inc., 3333 Highway 6 South, Houston, Texas, 77251-7171, USA
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
8
|
Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge. ENERGIES 2019. [DOI: 10.3390/en12061034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study aims to provide insight into the cost-effective catalyst on power generation in a microbial fuel cell (MFC) for treatment of municipal sludge. Power production from MFCs with carbon, Fe2O3, and Pt electrodes were compared. The MFC with no coating on carbon generated the least power density (6.72 mW·m−2) while the MFC with Fe2O3-coating on carbon anodes and carbon cathodes generated a 78% higher power output (30.18 mW·m−2). The third MFC with Fe2O3-coated carbon anodes and Pt on carbon as the cathode catalyst generated the highest power density (73.16 mW·m−2) at room temperature. Although the power generated with a conventional Pt catalyst was more than two-fold higher than Fe2O3, this study suggests that Fe2O3 can be investigated further as an efficient, low-cost, and alternative catalyst of Pt, which can be optimized for improving performance of MFCs. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) results demonstrated reduced resistance of MFCs and better charge transfer between biofilm and electrodes containing coated anodes compared to non-coated anodes. Scanning electron microscopy (SEM) was used to analyze biofilm morphology and microbial community analysis was performed using 16S rRNA gene sequencing, which revealed the presence of known anaerobic fermenters and methanogens that may play a key role in energy generation in the MFCs.
Collapse
|
9
|
Rathi R, Lavania M, Kukreti V, Lal B. Evaluating the potential of indigenous methanogenic consortium for enhanced oil and gas recovery from high temperature depleted oil reservoir. J Biotechnol 2018; 283:43-50. [DOI: 10.1016/j.jbiotec.2018.06.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/01/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
10
|
Srikanth S, Kumar M, Puri SK. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry. BIORESOURCE TECHNOLOGY 2018; 265:506-518. [PMID: 29886049 DOI: 10.1016/j.biortech.2018.02.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Petroleum industry is one of the largest and fast growing industries due to the ever increasing global energy demands. Petroleum refinery produces huge quantities of wastes like oily sludge, wastewater, volatile organic compounds, waste catalyst, heavy metals, etc., because of its high capacity and continuous operation of many units. Major challenge to this industry is to manage the huge quantities of waste generated from different processes due to the complexity of waste as well as changing stringent environmental regulations. To decrease the energy loss for treatment and also to conserve the energy stored in the chemical bonds of these waste organics, bio-electrochemical system (BES) may be an efficient tool that reduce the economics of waste disposal by transforming the waste into energy pool. The present review discusses about the feasibility of using BES as a potential option for harnessing energy from different waste generated from petroleum refineries.
Collapse
Affiliation(s)
- Sandipam Srikanth
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - Manoj Kumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India.
| | - S K Puri
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
11
|
Rengasamy K, Ranaivoarisoa T, Singh R, Bose A. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1. Bioelectrochemistry 2018; 122:164-173. [DOI: 10.1016/j.bioelechem.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
|
12
|
Gacitúa MA, Muñoz E, González B. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH. Bioelectrochemistry 2018; 119:26-32. [DOI: 10.1016/j.bioelechem.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/29/2022]
|
13
|
Wei C, Wei L, Li C, Wei D, Zhao Y. Effects of salinity, C/S ratio, S/N ratio on the BESI process, and treatment of nanofiltration concentrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5129-5139. [PMID: 28710731 DOI: 10.1007/s11356-017-9585-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
A laboratory-scale biodegradation and electron transfer based on the sulfur metabolism in the integrated (BESI®) process was used to treat a saline petrochemical nanofiltration concentrate (NFC). The integrated process consisted of activated sludge sulfate reduction (SR), and sulfide oxidation (SO) reactors, and a biofilm nitrification reactor. During the process, the total removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were 76.2, 83.8, and 73.1%, respectively. In the SR reactor, most of the organic degradation occurred and approximately 70% COD were removed by the sulfate-reducing bacteria (SRB). In the SO reactor, both the autotrophic and heterotrophic denitrifications were observed to take place. In parallel, batch experiments were conducted to detect the effects of different C/S and S/N ratios on COD removal and denitrification efficiency. The batch experiments were also conducted to detect the effects of salinity on COD and sulfate reduction. The composition of pollutants in the wastewater was complex, and some existing organics were not degraded by the SRB. The non-SRB groups also played important roles in the reactor. Under salinity-induced stress, the metabolisms of the SRBs and non-SRB groups were both inhibited. However, 6 g/L NaCl did not have much effect on the final COD removal efficiency. In the batch experiments, the added sulfide served as the electron donor for autotrophic denitrification. The added organics provided substance for heterotrophic denitrification.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yunfa Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
14
|
Shin HJ, Jung KA, Nam CW, Park JM. A genetic approach for microbial electrosynthesis system as biocommodities production platform. BIORESOURCE TECHNOLOGY 2017; 245:1421-1429. [PMID: 28550992 DOI: 10.1016/j.biortech.2017.05.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Microbial electrosynthesis is a process that can produce biocommodities from the reduction of substrates with microbial catalysts and an external electron supply. This process is expected to become a new application of a cell factory for novel chemical production, wastewater treatment, and carbon capture and utilization. However, microbial electrosynthesis is still subject to several problems that need to be overcome for commercialization, so continuous development such as metabolic engineering is essential. The development of microbial electrosynthesis can open up new opportunities for sustainable biocommodities production platforms. This review provides significant information on the current state of MES development, focusing on extracellularly electron transfer and metabolic engineering.
Collapse
Affiliation(s)
- Hyo Jeong Shin
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Kyung A Jung
- Bioenergy Research Center, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Chul Woo Nam
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Jong Moon Park
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea; Bioenergy Research Center, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea; Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea.
| |
Collapse
|
15
|
Peng X, Tang T, Zhu X, Jia G, Ding Y, Chen Y, Yang Y, Tang W. Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation. ENVIRONMENTAL TECHNOLOGY 2017; 38:2400-2409. [PMID: 27852149 DOI: 10.1080/09593330.2016.1262462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work is to utilize the microbial fuel cell for removing metals and sulfate from acid mine drainage using sewage sludge organics and simultaneous electricity generation. The enriched sulfate-reducing mixed culture was used as the cathodic biofilm and the sludge as the substrate. Under anaerobic conditions, 71.2% sulfate, 99.7% heavy metals, and 51.6% total chemical oxygen demand are removed at an electrode spacing of 4 cm and a sludge concentration of 30% (v/v) after 10-day treatment. A maximum power density of 51.3 mW/m2 is obtained. Approximately 79.5% of the dissipated sulfate is converted to element sulfur or polysulfides. The sulfide concentration is kept at below 20 mg-S/L. The concentrations of heavy metals are in the range of 0.02-0.06 mg/L in the effluent, which are far below the levels required by Chinese legislation. Microbial community analysis reveals that sulfate-reducing bacteria in Desulfuromonadales are dominant on the cathodic biofilm at the end of experiments. This study shows the potential of synchronous degradation of residual sludge and treatment of AMD with electricity harvesting.
Collapse
Affiliation(s)
- Xiang Peng
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
| | - Tianle Tang
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
- b School of Tropical and Laboratory Medicine , Hainan Medical University , Haikou Hainan , People's Republic of China
| | - Xiaoqiao Zhu
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
| | - Gaohui Jia
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
| | - Yanran Ding
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
| | - Yawen Chen
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
| | - Yang Yang
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
| | - Wenhao Tang
- a College of Environment and Plant Protection , Hainan University , Haikou Hainan , People's Republic of China
| |
Collapse
|
16
|
Kumar SS, Malyan SK, Basu S, Bishnoi NR. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16019-16030. [PMID: 28537018 DOI: 10.1007/s11356-017-9112-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m3 and volumetric current density was 16.17 A/m3. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.
Collapse
Affiliation(s)
- Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sandeep K Malyan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
17
|
Guerrini E, Grattieri M, Faggianelli A, Cristiani P, Trasatti S. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells. Bioelectrochemistry 2015; 106:240-7. [DOI: 10.1016/j.bioelechem.2015.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/24/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
18
|
Gobal F, Faraji M. RuO2/MWCNT/ stainless steel mesh as a novel positive electrode in vanadium redox flow batteries. RSC Adv 2015. [DOI: 10.1039/c5ra12342a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work describes the preparation and electrochemical characterization of RuO2/MWCNT/Stainless Steel Mesh (SSM) electrode as compared with a MWCNT/SSM electrode in the positive half-cell of a Vanadium Redox Flow Battery (VRFB).
Collapse
Affiliation(s)
- Fereydoon Gobal
- Department of Chemistry
- Sharif University of Technology
- Tehran, Iran
| | - Masoud Faraji
- Department of Chemistry
- Sharif University of Technology
- Tehran, Iran
| |
Collapse
|
19
|
Jain P, Sharma M, Kumar M, Dureja P, Singh MP, Lal B, Sarma PM. Electrochemical removal of sulfate from petroleum produced water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:284-292. [PMID: 26177412 DOI: 10.2166/wst.2015.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Petroleum produced water (PPW) is a waste-stream that entails huge cost on the petroleum industry. Along with other suspended and dissolved solids, it contains sulfate, which is a major hurdle for its alternative use intended toward enhanced oil recovery. This study proposes a two-step process for sulfate removal from PPW. A synthetic PPW was designed for the study using response surface methodology. During the first step, sulfate present in PPW was reduced to sulfide by anaerobic fermentation with 80% efficiency. In the second step, more than 70% of the accumulated sulfide was electrochemically oxidized. This integrated approach successfully removed sulfate from the synthetic wastewater indicating its applicability in the treatment of PPW and its subsequent applications in other oil field operations.
Collapse
Affiliation(s)
- Pratiksha Jain
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India E-mail: ; TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Mohita Sharma
- TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Faridabad 121007, Haryana, India
| | - Prem Dureja
- TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - M P Singh
- Indian Oil Corporation Limited (IOCL), R&D Centre, Faridabad 121007, Haryana, India
| | - Banwari Lal
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India E-mail: ; TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Priyangshu M Sarma
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India E-mail: ; TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| |
Collapse
|
20
|
Rathi R, Lavania M, Sawale M, Kukreti V, Kumar S, Lal B. Stimulation of an indigenous thermophillic anaerobic bacterial consortium for enhanced oil recovery. RSC Adv 2015. [DOI: 10.1039/c5ra10489k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Production of gases, VFAs, solvents and surfactants was achieved by thermophilic methanogenic consortium TERIL63, showing reduction in surface tension from 69 to 35 dynes cm−1. TERIL63 with an optimized nutrient recipe showed 15.49% EOR at 70 °C in a core flood study.
Collapse
Affiliation(s)
- Rohit Rathi
- Microbial Biotechnology
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute (TERI)
- New Delhi 110003
- India
| | - Meeta Lavania
- Microbial Biotechnology
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute (TERI)
- New Delhi 110003
- India
| | | | - Vipin Kukreti
- Institute of Reservoir Studies
- Oil and Natural Gas Corporation Limited
- Ahmedabad
- India
| | - Subir Kumar
- Institute of Reservoir Studies
- Oil and Natural Gas Corporation Limited
- Ahmedabad
- India
| | - Banwari Lal
- Microbial Biotechnology
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute (TERI)
- New Delhi 110003
- India
| |
Collapse
|
21
|
Sharma M, Sarma PM, Pant D, Dominguez-Benetton X. Optimization of electrochemical parameters for sulfate-reducing bacteria (SRB) based biocathode. RSC Adv 2015. [DOI: 10.1039/c5ra04120a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study focuses on the effect of operational and physiochemical factors on a stable sulfate reducing bacteria biocathode and their effect on the electrochemical response thereof.
Collapse
Affiliation(s)
- Mohita Sharma
- TERI University
- New Delhi
- India
- The Energy and Resource Institute (TERI)
- IHC
| | | | - Deepak Pant
- Separation & Conversion Technologies
- VITO – Flemish Institute for Technological Research
- 2400 Mol
- Belgium
| | | |
Collapse
|
22
|
Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Sharma M, Varanasi JL, Jain P, Dureja P, Lal B, Dominguez-Benetton X, Pant D, Sarma PM. Influence of headspace composition on product diversity by sulphate reducing bacteria biocathode. BIORESOURCE TECHNOLOGY 2014; 165:365-371. [PMID: 24726774 DOI: 10.1016/j.biortech.2014.03.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
Mixed culture of sulphate reducing bacteria named TERI-MS-003 was used for development of biocathode on activated carbon fabric fastened to stainless steel mesh for conversion of volatile fatty acids to reduced organic compounds under chronoamperometric conditions of -0.85V vs. Ag/AgCl (3.5M KCl). A range of chemicals were bioelectrosynthesized, however the gases present in headspace environment of the bioelectrochemical reactor governed the product profile. Succinate, ethanol, hydrogen, glycerol and propionate were observed to be the predominant products when the reactor was hermetically sealed. On the other hand, acetone, propionate, isopropanol, propanol, isobutyrate, isovalerate and heptanoate were the predominant products when the reactor was continuously sparged with nitrogen. This study highlights the importance of head space composition in order to manoeuvre the final product profile desired during a microbial electro-synthesis operation and the need for simultaneously developing effective separation and recovery strategies from an economical and practical standpoint.
Collapse
Affiliation(s)
- Mohita Sharma
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110003, India; Separations and Conversion Technologies, VITO-Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Jhansi L Varanasi
- TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110003, India
| | - Pratiksha Jain
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110003, India
| | - Prem Dureja
- TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110003, India
| | - Banwari Lal
- TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110003, India
| | - Xochitl Dominguez-Benetton
- Separations and Conversion Technologies, VITO-Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Deepak Pant
- Separations and Conversion Technologies, VITO-Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Priyangshu M Sarma
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110003, India.
| |
Collapse
|
24
|
Venkata Mohan S, Velvizhi G, Vamshi Krishna K, Lenin Babu M. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. BIORESOURCE TECHNOLOGY 2014; 165:355-364. [PMID: 24791713 DOI: 10.1016/j.biortech.2014.03.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Microbial catalyzed electrochemical systems (MCES) have been intensively pursued in both basic and applied research as a futuristic and sustainable platform specifically in harnessing energy and generating value added bio-products. MCES have documented multiple/diverse applications which include microbial fuel cell (for harnessing bioelectricity), bioelectrochemical treatment system (waste remediation), bioelectrochemical system (bio-electrosynthesis of various value added products) and microbial electrolytic cell (H2 production at lower applied potential). Microorganisms function as biocatalyst in these fuel cell systems and the resulting electron flux from metabolism plays pivotal role in bio-electrogenesis. Exo-electron transfer machineries and strategies that regulate metabolic flux towards exo-electron transport were delineated. This review addresses the contemporary progress and advances made in MCES, focusing on its application towards value addition and waste remediation.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | - G Velvizhi
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - K Vamshi Krishna
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - M Lenin Babu
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| |
Collapse
|