1
|
Sar T, Marchlewicz A, Harirchi S, Mantzouridou FT, Hosoglu MI, Akbas MY, Hellwig C, Taherzadeh MJ. Resource recovery and treatment of wastewaters using filamentous fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175752. [PMID: 39182768 DOI: 10.1016/j.scitotenv.2024.175752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Industrial wastewater, often characterized by its proximity to neutral pH, presents a promising opportunity for fungal utilization despite the prevalent preference of fungi for acidic conditions. This review addresses this discrepancy, highlighting the potential of certain industrial wastewaters, particularly those with low pH levels, for fungal biorefinery. Additionally, the economic implications of biomass recovery and compound separation, factors that require explicit were emphasized. Through an in-depth analysis of various industrial sectors, including food processing, textiles, pharmaceuticals, and paper-pulp, this study explores how filamentous fungi can effectively harness the nutrient-rich content of wastewaters to produce valuable resources. The pivotal role of ligninolytic enzymes synthesized by fungi in wastewater purification is examined, as well as their ability to absorb metal contaminants. Furthermore, the diverse benefits of fungal biorefinery are underscored, including the production of protein-rich single-cell protein, biolipids, enzymes, and organic acids, which not only enhance environmental sustainability but also foster economic growth. Finally, the challenges associated with scaling up fungal biorefinery processes for wastewater treatment are critically evaluated, providing valuable insights for future research and industrial implementation. This comprehensive analysis aims to elucidate the potential of fungal biorefinery in addressing industrial wastewater challenges while promoting sustainable resource utilization.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Ariel Marchlewicz
- University of Silesia in Katowice, The Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland; University of Jyväskylä, The Faculty of Mathematics and Science, The Department of Biological and Environmental Science, Survontie 9c, FI-40500 Jyväskylä, Finland
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran P.O. Box 3353-5111, Iran
| | - Fani Th Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Muge Isleten Hosoglu
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | | |
Collapse
|
2
|
Kumar V, Pallavi P, Sen SK, Raut S. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10959. [PMID: 38204323 DOI: 10.1002/wer.10959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
The contamination of wastewater with textile dyes has emerged as a pressing environmental concern due to its persistent nature and harmful effects on ecosystems. Conventional dye treatment methods have proven inadequate in effectively breaking down complex dye molecules. However, a promising alternative for textile dye degradation lies in the utilization of white rot fungi, renowned for their remarkable lignin-degrading capabilities. This review provides a comprehensive analysis of the potential of white rot fungi in degrading textile dyes, with a particular focus on their ligninolytic enzymes, specifically examining the roles of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase in the degradation of lignin and their applications in textile dye degradation. The primary objective of this paper is to elucidate the enzymatic mechanisms involved in dye degradation, with a spotlight on recent research advancements in this field. Additionally, the review explores factors influencing enzyme production, including culture conditions and genetic engineering approaches. The challenges associated with implementing white rot fungi and their ligninolytic enzymes in textile dye degradation processes are also thoroughly examined. Textile dye contamination poses a significant environmental threat due to its resistance to conventional treatment methods. White rot fungi, known for their ligninolytic capabilities, offer an innovative approach to address this issue. The review delves into the intricate mechanisms through which white rot fungi and their enzymes, including LiP, MnP, and laccase, break down complex dye molecules. These enzymes play a pivotal role in lignin degradation, a process that can be adapted for textile dye removal. The review also emphasizes recent developments in this field, shedding light on the latest findings and innovations. It discusses how culture conditions and genetic engineering techniques can influence the production of these crucial enzymes, potentially enhancing their efficiency in textile dye degradation. This highlights the potential for tailored enzyme production to address specific dye contaminants effectively. The paper also confronts the challenges associated with integrating white rot fungi and their ligninolytic enzymes into practical textile dye degradation processes. These challenges encompass issues like scalability, cost-effectiveness, and regulatory hurdles. By acknowledging these obstacles, the review aims to pave the way for practical and sustainable applications of white rot fungi in wastewater treatment. In conclusion, this comprehensive review offers valuable insights into how white rot fungi and their ligninolytic enzymes can provide a sustainable solution to the urgent problem of textile dye-contaminated wastewater. It underscores the enzymatic mechanisms at play, recent research breakthroughs, and the potential of genetic engineering to optimize enzyme production. By addressing the challenges of implementation, this review contributes to the ongoing efforts to mitigate the environmental impact of textile dye pollution. PRACTITIONER POINTS: Ligninolytic enzymes from white rot fungi, like LiP, MnP, and laccase, are crucial for degrading textile dyes. Different dyes and enzymatic mechanisms is vital for effective wastewater treatment. Combine white rot fungi-based strategies with mediator systems, co-culturing, or sequential treatment approaches to enhance overall degradation efficiency. Emphasize the broader environmental impact of textile dye pollution and position white rot fungi as a promising avenue for contributing to mitigation efforts. This aligns with the overarching goal of sustainable wastewater treatment practices and environmental conservation. Consider scalability, cost-effectiveness, and regulatory compliance to pave the way for sustainable applications that can effectively mitigate the environmental impact of textile dye pollution.
Collapse
Affiliation(s)
- Vikas Kumar
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Preeti Pallavi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | | | - Sangeeta Raut
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
3
|
Zafiu C, Part F, Ehmoser EK, Kähkönen MA. Investigations on inhibitory effects of nickel and cobalt salts on the decolorization of textile dyes by the white rot fungus Phanerochaete velutina. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112093. [PMID: 33721667 DOI: 10.1016/j.ecoenv.2021.112093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Organic aromatic compounds used for dyeing and coloring in the textile industry are persistent and hazardous pollutants that must be treated before they are discharged into rivers and surface waters. Therefore, we investigated the potential of the white rot fungus Phanerochaete velutina to decolorize commonly used reactive dyes. The fungus decolorized in average 55% of Reactive Orange 16 (RO-16) after 14 days at a maximum rate of 0.09 d-1 and a half-life of 8 days. Furthermore, we determined the inhibitory effects of co-present inorganic contaminants Nickel (Ni) and Cobalt (Co) salts on the decolorization potential and determined IC50 values of 5.55 mg l-1 for Co and a weaker inhibition by Ni starting from a concentration of 20 mg l-1. In the decolorization assay for Remazol Brilliant Blue R (RBBR) we observed the interference of a metabolite of P. velutina, which did not allow us to investigate the kinetics of the reaction. The formation of the metabolite, however, could be used to obtain IC50 values of 3.37 mg l-1 for Co and 7.58 mg l-1 for Ni. Our results show that living white rot fungi, such as P. velutina, can be used for remediation of dye polluted wastewater, alternatively to enzyme mixtures, even in the co-presence of heavy metals.
Collapse
Affiliation(s)
- Christian Zafiu
- University of Natural Resources and Life Sciences, Vienna, Department of Water-Atmosphere-Environment, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria
| | - Florian Part
- University of Natural Resources and Life Sciences, Vienna, Department of Water-Atmosphere-Environment, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria.
| | - Eva-Kathrin Ehmoser
- University of Natural Resources and Life Sciences, Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Mika A Kähkönen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, (Biocenter 1, Viikinkaari 9), Finland
| |
Collapse
|
4
|
Biodegradation of azo dye-containing wastewater by activated sludge: a critical review. World J Microbiol Biotechnol 2021; 37:101. [PMID: 33983510 DOI: 10.1007/s11274-021-03067-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The effluent from the textile industry is a complex mixture of recalcitrant molecules that can harm the environment and human health. Biological treatments are usually applied for this wastewater, particularly activated sludge, due to its high efficiency, and low implementation and operation costs. However, the activated sludge microbiome is rarely well-known. In general, activated sludges are composed of Acidobacteria, Bacillus, Clostridium, Pseudomonas, Proteobacteria, and Streptococcus, in which Bacillus and Pseudomonas are highlighted for bacterial dye degradation. Consequently, the process is not carried out under optimum conditions (treatment yield). Therefore, this review aims to contextualize the potential environmental impacts of azo dye-containing wastewater from the textile industry, including toxicity, activated sludge microbiome identification, in particular using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a novel, rapid and accurate strategy for the identification of activated sludge microbiome (potential to enhance treatment yield).
Collapse
|
5
|
Bellucci M, Marazzi F, Musatti A, Fornaroli R, Turolla A, Visigalli S, Bargna M, Bergna G, Canziani R, Mezzanotte V, Rollini M, Ficara E. Assessment of anammox, microalgae and white-rot fungi-based processes for the treatment of textile wastewater. PLoS One 2021; 16:e0247452. [PMID: 33651835 PMCID: PMC7924738 DOI: 10.1371/journal.pone.0247452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/06/2021] [Indexed: 01/22/2023] Open
Abstract
The treatability of seven wastewater samples generated by a textile digital printing industry was evaluated by employing 1) anammox-based processes for nitrogen removal 2) microalgae (Chlorella vulgaris) for nutrient uptake and biomass production 3) white-rot fungi (Pleurotus ostreatus and Phanerochaete chrysosporium) for decolorization and laccase activity. The biodegradative potential of each type of organism was determined in batch tests and correlated with the main characteristics of the textile wastewaters through statistical analyses. The maximum specific anammox activity ranged between 0.1 and 0.2 g N g VSS-1 d-1 depending on the sample of wastewater; the photosynthetic efficiency of the microalgae decreased up to 50% during the first 24 hours of contact with the textile wastewaters, but it improved from then on; Pleurotus ostreatus synthetized laccases and removed between 20-62% of the colour after 14 days, while the enzymatic activity of Phanerochaete chrysosporium was inhibited. Overall, the findings suggest that all microbes have great potential for the treatment and valorisation of textile wastewater after tailored adaptation phases. Yet, the depurative efficiency can be probably enhanced by combining the different processes in sequence.
Collapse
Affiliation(s)
| | | | - Alida Musatti
- Università degli Studi di Milano, DeFENS, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Agarkoti C, Gogate PR, Pandit AB. Comparison of acoustic and hydrodynamic cavitation based hybrid AOPs for COD reduction of commercial effluent from CETP. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111792. [PMID: 33383477 DOI: 10.1016/j.jenvman.2020.111792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 05/10/2023]
Abstract
The present work investigates the treatment of commercial effluent obtained from Common Effluent Treatment Plants (CETP) using acoustic cavitation (AC) and hydrodynamic cavitation (HC) based hybrid AOPs. Comparison of different hybrid AOPs viz. H2O2, Fe2+/H2O2, Fe2+/H2O2/Air, Fe2+/H2O2/S2O82- and Fe2+/H2O2/S2O82-/Air in combination with both AC and HC has been performed in terms of extent of chemical oxygen demand (COD) reduction and kinetic rate constants. The best results of COD reduction as 95.2% and 97.28% were obtained for AC/Fe2+/H2O2/Air and HC/Fe2+/H2O2/Air systems respectively at Fe2+/H2O2 ratio of 0.1 and pH of 2 within 60 min of treatment under conditions of ultrasonic power dissipation as 150 W, inlet pressure for HC as 4 bar (as applicable depending on process) and temperature of 30 ± 2 °C. Slightly lower efficacy was established for the combination approach involving AC or HC coupled with Fe2+-activated S2O82- and H2O2 yielding COD reduction of 82.9% and 86.93% for the AC/Fe2+/H2O2/S2O82-/Air and HC/Fe2+/H2O2/S2O82-/Air systems respectively at Fe2+/H2O2/S2O82- ratio of 1:40:17.5. Cost estimation on the basis of cavitational yield performed on the AC and HC based treatment systems revealed economical nature of HC based treatment. Kinetic studies were also performed by fitting the experimental data with pseudo first order kinetic model (PFOKM), generalized kinetic model (GKM) and Behnajady-Modirshahla-Ghanbery kinetic model (BMGKM). It was demonstrated that GKM provided best fitting for all the experiments whereas BMGKM was most suitable for Fenton based reactions. It was clearly established that complex CETP effluent can be effectively treated using the combined approaches based on HC with potential for larger scale operation.
Collapse
Affiliation(s)
- Chandrodai Agarkoti
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| | - Aniruddha B Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| |
Collapse
|
7
|
Enhanced textile wastewater treatment by a novel biofilm carrier with adsorbed nutrients. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Rondon H, El-Cheikh W, Boluarte IAR, Chang CY, Bagshaw S, Farago L, Jegatheesan V, Shu L. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater. BIORESOURCE TECHNOLOGY 2015; 183:78-85. [PMID: 25723130 DOI: 10.1016/j.biortech.2015.01.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely.
Collapse
Affiliation(s)
- Hector Rondon
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia
| | - William El-Cheikh
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia
| | | | - Chia-Yuan Chang
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | - Steve Bagshaw
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia
| | - Leanne Farago
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia
| | - Veeriah Jegatheesan
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia
| | - Li Shu
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia
| |
Collapse
|